

Deliverable Version 1.0

Seventh Framework Programme

CallFP7-ICT-2013-10

Project Acronym: S-CASE

Grant Agreement No: 610717

Project Type: COLLABORATIVE PROJECT

Project Full Title: Scaffolding Scalable Software Services

D3.2.2 Module for extracting software artefacts from
storyboards

Nature: R
Dissemination Level: PU

Version #: 1.0
Date: 30 January 2015

WP number and Title: WP3 Multimodal Information Processing
Deliverable Leader: AUTH

Author(s): Themistoklis Diamantopoulos (AUTH)
Revision: Davide Tossi (INS), Ciro Formisano (ENG),

Andreas Symeonidis (AUTH)
Status: Submitted (Draft, Peer-Reviewed, Submitted, Approved)

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [2] of [61]

Document History

Version1 Issue Date Status2 Content and changes
0.1 10 December 2014 Draft TOC
0.2 22 December 2014 Draft Added Section 1 and subsection 2.1
0.3 29 December 2014 Draft Added Section 3
0.4 3 January 2015 Draft Added subsection 2.2
0.5 5 January 2015 Draft Added Section 4
0.6 9 January 2015 Draft Added Sections 5 and 6, minor corrections
0.7 22 January 2015 Peer-Reviewed Minor corrections noted by reviews
0.8 23 January 2015 Peer-Reviewed Added subsection 2.3
0.9 26 January 2015 Peer-Reviewed Added subsection 5.4
1.0 30 January 2015 Submitted Final Proof-reading

Peer Review History3

Version Peer Review Date Reviewed By
0.6 16 January 2015 Ciro Formisano (ENG)
0.6 22 January 2015 Davide Tosi (INS)
1.0 30 January 2015 Andreas Symeonidis (AUTH)

1Please use a new number for each new version of the deliverable. Use “0.#” for Draft and Peer-Reviewed. “x.#” for
Submitted and Approved”, where x>=1.Add the date when this version was issued and list the items that have been added
or changed.

2A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted and Approved.

3Only for deliverables that have to be peer-reviewed

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [3] of [61]

Table of contents

DOCUMENT HISTORY .. 2

TABLE OF CONTENTS ... 3

ABBREVIATIONS AND ACRONYMS .. 5

EXECUTIVE SUMMARY .. 6

1 INTRODUCTION ... 7

1.1 WP3 OBJECTIVES .. 7

1.2 SCOPE OF TASK 3.2 ... 7

1.3 STRUCTURE OF THIS DELIVERABLE ... 8

2 STATE-OF-THE-ART: UML DIAGRAMS AND GRAPHICAL EDITORS 9

2.1 UML DIAGRAMS FOR THE DYNAMIC VIEW OF SOFTWARE PROJECTS ... 9

2.1.1 STRUCTURE AND BEHAVIOUR DIAGRAMS ... 9

2.1.2 ACTIVITY DIAGRAMS .. 9

2.1.3 OTHER DYNAMIC REPRESENTATIONS ... 11

2.1.4 DYNAMIC REPRESENTATIONS IN THE RESTFUL DOMAIN .. 12

2.2 GRAPHICAL EDITORS .. 12

2.2.1 CREATING GRAPHICAL EDITORS .. 14

2.2.2 ECLIPSE GRAPHICAL MODELING PROJECT ... 14

2.3 TASK CONTRIBUTIONS AND PROGRESS BEYOND THE STATE-OF-THE-ART 16

3 ONTOLOGY FOR THE DYNAMIC VIEW OF SOFTWARE PROJECTS 17

3.1 ONTOLOGY OVERVIEW ... 17

3.1.1 ONTOLOGY CLASS HIERARCHY .. 17

3.1.2 ONTOLOGY PROPERTIES .. 19

3.2 EXAMPLE INSTANCES .. 22

4 STORYBOARD CREATOR .. 25

4.1 REQUIREMENTS OF THE STORYBOARD CREATOR .. 25

4.2 DESIGN OF THE STORYBOARD CREATOR ... 26

4.2.1 ARCHITECTURE .. 26

4.2.2 MODELS .. 27

4.2.3 COMBINING THE MODELS AND GENERATING THE TOOL .. 30

4.2.4 REFINING THE STORYBOARD CREATOR ... 31

4.2.5 STORYBOARD CREATOR FILE MODEL ... 31

4.3 USAGE OF THE STORYBOARD CREATOR .. 33

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [4] of [61]

4.3.1 FEATURES .. 33

4.3.2 USAGE AND VALIDATION ... 34

4.3.3 ONTOLOGY INSTANTIATION ... 35

5 AGGREGATED ONTOLOGY OF SOFTWARE PROJECTS ... 40

5.1 ONTOLOGY OVERVIEW ... 40

5.1.1 ONTOLOGY CLASS HIERARCHY .. 40

5.1.2 ONTOLOGY PROPERTIES .. 42

5.2 ONTOLOGY LINKING ... 44

5.2.1 LINKING THE STATIC AND DYNAMIC ONTOLOGIES ... 44

5.2.2 EXAMPLE INSTANTIATION .. 47

5.3 ONTOLOGY API .. 49

5.4 ONTOLOGY INSTANTIATION USING THE RESTFUL API MODELING LANGUAGE 54

6 CONCLUSIONS ... 60

REFERENCES .. 61

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [5] of [61]

Abbreviations and Acronyms

API Application Programming Interface

CIM Computationally Independent Model

CRUD Create, Read, Update, Delete

EMF Eclipse Modeling Framework

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

HTTP HyperText Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation

MDE Model-Driven Engineering

OWL Web Ontology Language

RAML RESTful API Modeling Language

REST REpresentational State Transfer

RDF Resource Description Framework

UML Unified Modeling Language

URI Uniform Resource Identifier

XML eXtensible Markup Language

YAML YAML Ain't Markup Language

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [6] of [61]

Executive Summary

The module for extracting software artefacts from storyboards converts dynamic scenarios
expressed in the form of storyboards into artefacts that map to the S-CASE ontology. This is
achieved by using a storyboard diagram editor that allows the developer to create and edit
his/her scenarios and a dynamic ontology to store the dynamic aspects of the system.

In the context of the S-CASE architecture, this module provides an initial analysis of the
dynamic view of software projects, which includes storyboards and dynamic-view UML
diagrams (e.g. activity diagrams). This information is used in conjunction with information on
the static view of software projects (text requirements, use case diagrams, etc.), as covered
in task T3.1, to provide a unified view of a software project. Additionally, this view will
populate the S-CASE registry, and will serve as the basis for a query mechanism that goes
beyond keyword search.

This deliverable (D3.2.1 Module for extracting software artefacts from storyboard) describes
the various components of the module developed for the task outlined above, including (1)
an ontology that defines a hierarchy of concepts and relations for representing dynamic
elements of software projects, (2) a diagram editor for storyboards that allows developers to
define system scenarios that are mapped to the ontology, and (3) an aggregated ontology
which provides a unified view of the system including all the static and dynamic concepts of
a software system as defined in Task 3.1 and Task 3.2, respectively. It is accompanied by the
respective prototype, D3.2.2 Module for extracting software artefacts from storyboard, that
is the software module implemented.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [7] of [61]

1 Introduction

Deliverable D3.2 (Module for extracting software artefacts from storyboards) describes the
components implemented for converting dynamic aspects of a software system to a formal
representation that maps to the S-CASE ontology. This deliverable is part of Work Package 3
(WP3), which aims to extract requirements from multi-modal input.

1.1 WP3 Objectives

The main goal of WP3 (Multi-modal information processing) is to design the mechanisms for
efficiently extracting requirements from formal models such as UML diagrams, as well as
from text and images. Additionally, WP3 will design and implement the Question-Answering
mechanism that will serve as the user interface for querying on software artefacts. The WP
has four specific objectives:

• To recognize software requirements expressed in unstructured and semi-structured
English text and formally represent them as static system aspects (T3.1).

• To analyse dynamic scenarios in the form of storyboards and provide a
representation of the dynamic view of software projects (T3.2).

• To transform XMI-based UML diagrams into the S-CASE ontology and to semantically
analyse images of UML diagrams (T3.3).

• To develop a question answering system that will allow developers to pose queries
about the software components in the S-CASE repository (T3.4).

This deliverable focuses on the second objective. We describe the scope of the
corresponding task in more detail in the following subsection.

1.2 Scope of Task 3.2

This deliverable reports on work performed for Task 3.2, which comprises the following
subtasks:

• analysis of the dynamic features of software projects,
• definition of a structure to represent these features, and
• definition of a storyboard representation in order to allow the developer to describe

dynamic system scenarios.

Additionally, a unified view of the static and dynamic concepts of a software system has to
be defined, which includes the features recognized in Task 3.1 and Task 3.2 respectively.
Work on these tasks has resulted in the following contributions described in this deliverable:
(1) an ontology that defines a hierarchy of concepts and relations for representing dynamic
elements of software projects, (2) a tool for creating and editing storyboards that are
mapped to the ontology, and (3) an aggregated ontology which provides a unified view of
the system including all the static and dynamic concepts of a software system.

Since Task 3.2 provides an overall view of the outcome of the first three tasks of WP3, it
covers the main scope of the Reqs2Specs module of S-CASE and provides the specifications
of the software project added by the developer. These specifications shall be communicated
to both the CIM of the MDE engine and the components for finding functionally equivalent
web services, which are part of tasks T2.3 and T4.3, respectively.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [8] of [61]

1.3 Structure of this Deliverable

The document is structured as follows. Section 2 describes the state-of-the-art on UML
diagrams for the dynamic view of software projects and the graphical editors for creating
these diagrams. Section 3 presents an ontology developed for formally representing dynamic
artefacts of software projects. Section 4 provides information on the Storyboard Creator, a
tool designed for creating and editing storyboards. Section 5 describes the aggregated
ontology of S-CASE which includes a unified view of software projects. Finally, Section 6
summarizes our progress on Task 3.2 focusing on the dynamic and unified system
representations.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [9] of [61]

2 State-of-the-art: UML Diagrams and Graphical Editors

This Section describes the diagramming techniques of the Unified Modeling Language (UML)
for representing dynamic scenarios of software projects. Additionally, we provide a state-of-
the-art on graphical diagram editors to justify the need for creating a new diagram editor for
storyboards.

2.1 UML Diagrams for the Dynamic View of Software Projects

2.1.1 Structure and Behaviour Diagrams

According to the UML specification [1], there are two major kinds of diagrams: Structure
diagrams and Behaviour diagrams. Structure diagrams are used to present the static
structure of the objects in a software system. In specific, these types of diagrams include the
objects of a system and possibly the relations among them, without however including any
details for the scenarios in which these relations appear. Examples of Structure diagrams
include Class diagrams, Component diagrams, etc.

The dynamic behaviour of the objects in a software system is illustrated using Behaviour
diagrams. These types of diagrams actually depict system scenarios where objects may
interact, thus describing a series of events for the system. Note that these events may or
may not change the state of the objects, i.e. even a stateless system may have to be
described using Behaviour diagrams to ensure its usage scenarios are clear. Examples of
Behaviour diagrams include Activity diagrams, State diagrams, etc.

In the context of this deliverable, we focus on the dynamic view of software projects, which
is described using Behaviour diagrams. Although there are several diagrams that cover the
dynamic aspects of a system, WP3 concerns only diagrams at requirements’ level, hence
including representations of high level entities, e.g. Activity diagrams, and excluding
scenarios of low level software entities, e.g. Sequence diagrams. Consequently the following
paragraph describes the usage of an Activity diagram and examines whether it fits the
RESTful paradigm of S-CASE.

2.1.2 Activity Diagrams

Activity diagrams are graphical representations of workflows that describe usage (and
system) scenarios in the form of consecutive actions. They also support conditions, iterative
flows, and concurrency. An example of an Activity diagram for project Restmarks [2] is
shown in Figure 2.1. In this diagram, the scenario “Create bookmark” is described. Restmarks
is a service that can be seen as a social network where each user can share his internet
bookmarks. Additionally, the user can add tags to his/her bookmarks, create, modify, or
delete existing bookmarks and search for his/her private bookmarks and/or public
bookmarks of other users4.

4 Throughout this deliverable, we will use project Restmarks as an example software project that is expected to
be prototyped using the tools provided by S-CASE.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [10] of [61]

Figure 2.1 Example activity diagram for the use case “Create bookmark” of Restmarks

According to the scenario depicted in Figure 2.1, the user has to initially be logged in to the
system. After that, creating a bookmark requires providing its URL and then the user is asked
to optionally add tags to the newly added bookmark.

The activity diagram of Figure 2.1 is certainly a valuable representation for a Requirements
engineer. However, in the context of RESTful web services, the diagram may contain several
pieces of redundant or unclear information. For instance, note that the prompt of the
system for providing the URL of a bookmark is followed by the user action (depicted as an
arrow in an activity diagram) of actually providing the URL. This information is therefore
redundant. Additionally, RESTful resources and properties of these resources are both
included in the same types of activities. Thus, distinguishing among these types is hard. For
example, if one isolates the activities of the diagram, they would end up with the following:

• Login to account
• Provide bookmark URL
• Create bookmark
• Add tag
• Provide tag text
• Add tag to bookmark

In this case, we would not be able to determine whether “tag” is a resource or even whether
“tag text” is a property. Note also that this diagram is generally well defined. The recognition
of “text” as a property of “tag” may be much more difficult if the developer provides an
activity “Provide text”.

Finally, as already mentioned, activity diagrams may include several other concepts that do
not conform to the RESTful paradigm. For instance, an activity diagram may depict
concurrent flows of activities. Concurrency is not actually supported by RESTful web services.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [11] of [61]

In specific, although it is possible for an interface to send two or more queries to a service
and expect all the responses in order to continue, in practice the requests will be handled
one at a time. Thus, it might be better to avoid such requirements representations since
they may be misleading as to the functionality of the service.

2.1.3 Other Dynamic Representations

As noted in the previous subsection, activity diagrams provide a useful representation for
the dynamic view of a system, without however totally fitting the RESTful paradigm. The
dynamic view of a system, however, can be described using several other representations,
either graphical or textual.

The main element that is required to be described is actually the dynamic scenario. A
scenario describes the flow of actions between two specific states of the system. An example
textual representation for a dynamic scenario is given in Figure 2.2.

Feature: Create bookmark

In order to create a new bookmark

As a user

I want to create a new bookmark

Scenario: User also wants to add a tag

 Given that the user is logged in

When the user selects to create a bookmark

Then the system adds a new bookmark

When the new bookmark is added

Then the user is asked to add a tag

When the user adds a tag

Then the system adds the tag to the bookmark

And gives the new bookmark to the user

Scenario: User does not want to add a tag

 Given that the user is logged in

When the user selects to create a bookmark

Then the system adds a new bookmark

And gives the new bookmark to the user

Figure 2.2 Example Cucumber scenario for the use case “Create bookmark” of Restmarks

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [12] of [61]

The representation shown in Figure 2.2 is a system behaviour scenario described in the
language of Cucumber [3]. In the language of Cucumber, certain keywords are used to
provide instruction-based scenarios. Given is used to define a condition, When is used for a
user action, Then for a system response, and And for connecting two or more actions or
responses. Additionally, the structure allows: defining the purpose of each scenario via the
phrase In order to; the actor of the scenario, via the phrase As a; the desired final state using
the phrase I want to.

Cucumber provides an interesting paradigm for creating scenarios based on behaviour
driven development. Its language is strict enough so that it can be easily parsed by NLP tools,
while the scenarios are quite descriptive. However, in our case, the use of Cucumber
scenarios seems unnatural; alternative flows in scenarios are rather verbose and the
language does not really conform to the RESTful paradigm.

2.1.4 Dynamic Representations in the RESTful Domain

Concerning the dynamic representation presented in the previous subsections, they can
under certain circumstances be used for engineering RESTful web services. In fact, the S-
CASE front-end is expected to handle activity diagrams as part of WP3 (specifically task T3.3).
However, the definition of another type of representation is preferred in order to ensure
that the developer provides the required information in a more RESTful-compliant manner.
In this Section, we describe the main elements of this representation not covered by current
literature.

At first, concerning the RESTful paradigm, the main building blocks of services are resources.
Resources may seem similar to objects in the Object-Oriented world, however their nature is
different in the way they are processed. Resources are processed in four specific ways, they
are created, read, updated, and deleted using the four common HTTP verbs (Post, Get, Put,
and Delete). Objects, on the other hand, are handled using any possible action verb since
they are constrained by any architectural paradigm. Additionally, the concept of properties
or parameters of resources does not fit well the Object-Oriented point of view. Resources,
on the other hand, utilize properties as parameters of HTTP verbs, e.g. retrieving a
“bookmark” may require to issue a “Get” command and providing its “id” as a parameter.

Thus, in our case, we require a representation that is highly descriptive for the elements of
RESTful web services. Furthermore, the designed representation has to be concise to avoid
cluttering the main elements of the simple RESTful scenarios. In specific, we focus on
creating a diagram type that covers the resources, the actions on them as well as the
parameters of these actions. Additionally, our representation must allow action flows, as
well as multiple alternative scenario flows via the use of conditions. This representation is
covered by Storyboard diagrams which will be analysed in Section 4.

2.2 Graphical Editors

In this Section, we present current UML graphical editor tools and discuss whether they are
compatible with our needs as tools for known UML diagrams and specifically for creating
storyboards.

Although there are several UML tools [4], most of them do not fit the paradigm of S-CASE. In
specific, the selected tool must have the following prerequisites:

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [13] of [61]

1. The tool must be open-source;
2. It must be cross-platform;
3. The modelling capabilities of the tool must support importing and exporting models

in XMI format (i.e. draw-only tools are not sufficient);
4. The support for the tool and its community should be broad.

Given that several popular UML tools are commercial, prerequisite 1 is not always easy to
cover. Additionally, there are several tools that cover the first two prerequisites but fall short
on current support, i.e. their latest stable release is more than 3 years before. These tools
are also not preferable since they may not cover the latest editions of UML.

So, for instance, ArgoUML [5] is a rather popular tool, however it has not been updated since
2011 [4]. StarUML [6], on the other hand, has been updated recently (2014), yet its reliance
on Delphi makes it difficult to cover the cross-platform criterion.

Two well-known tools that fit our requirements are Papyrus [7] and Modelio [8]. They are
both open-source and cross-platform since they are built as extensions to the Eclipse
platform. We can also safely assume that a well-established community of developers is
accustomed to Eclipse-based UML tools, given that the modelling capabilities of Eclipse are
known to a fair share of developers. Furthermore, since S-CASE is going to be connected to
the Eclipse platform, using a similar look and feel tool is certainly preferable.

Both Papyrus and Modelio cover all the prerequisites posed in the previous paragraphs. They
are also both continuously supported and their latest stable releases at the time of the
writing are within 2014. Additionally, both tools support XMI representations and are
generally sufficient for most UML diagram types. The similarities and differences between
those tools are actually out of the scope for this deliverable5, since the main question is
whether they are suitable for creating and editing storyboards.

Although these tools are quite useful for known UML diagram types, they are not a good fit
for creating special-purpose storyboards. The diagram types supported by Papyrus and
Modelio are used to describe a large variety of systems. In our RESTful paradigm,
storyboards are designed to be simple dynamic scenarios of the system; hence using a fully
complex UML tool would be an overstatement. Additionally, storyboards (as any other
diagram types) have their own rules as to the available model elements and the relations
among them (see Section 4). These rules are not supported by any of the aforementioned
UML tools.

Given that we create a new type of diagram, finding a tool to support creating these types of
diagrams out-of-the-box is actually impossible. From a technical point of view, when creating
a new diagram type, the description of the diagram is what we call the diagram meta-model.
A meta-model provides a focused detailed description of the model of a diagram type. In
fact, any type of diagram has one such meta-model, use case diagrams, activity diagrams,
etc. Thus, in our scenario, what we require is not a diagramming tool since it would not have
the meta-information to “understand” our diagrams; we need a framework that allows us to
provide this meta-information so that the produced diagram editor can handle storyboards.

5 The interested reader is referred to the wiki discussion for the UML tools used by S-CASE [6].

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [14] of [61]

2.2.1 Creating Graphical Editors

Since common UML tools do not support the features described in the previous subsections,
we decided to design a new tool for creating storyboards. In this Section, we discuss the
main alternatives for creating graphical editors.

Since S-CASE has integration with the Eclipse IDE, a rational choice for creating a diagram
editor is to use the capabilities of Eclipse for creating diagrams. Currently, the most well-
known infrastructure for developing graphical editors in Eclipse is the Graphical Modeling
Framework (GMF). The GMF runtime of Eclipse provides a generative component and
runtime infrastructure for developing graphical editors based on the Eclipse Modeling
Framework (EMF) and the Graphical Editing Framework (GEF). We analyse these frameworks
in the next paragraph.

While selecting GMF we had to choose between using the “plain” framework, and using
some more high-level infrastructures provided by other projects. In specific, two projects
that certainly draw the attention of the respective community are Graphiti [10] and EuGENia
[11]. However, using GMF itself allowed us better finegraining of the editor. Additionally, at
the time of writing, Graphiti is in the incubation phase while EuGENia provides even more
abstraction by using a language (called Emfatic) to provide all models in one large file.

2.2.2 Eclipse Graphical Modeling Project

2.2.2.1 Overview

As noted in the previous paragraph, the GMF runtime relies on two frameworks, EMF and
GEF. EMF is a framework and code generation facility that allows building applications based
on a meta-model [12]. The meta-model is actually the core of an EMF project, thus it is called
ecore. Thus, an ecore file describes how the data is structured in packages, classes,
enumerations, types, etc. After that, any model created by the user of the application has to
comply with the rules defined by the meta-model.

GEF is a framework used to create graphical editors [13]. It requires a model that has to be
designed beforehand, usually using EMF. GEF provides several editing capabilities, including
canvas as well as tooling. Note that GEF does not actually validate any model. This has to be
accomplished by the underlying model itself (EMF). A GEF projects is defined by two parts:
the graphical definition, and the tooling definition. The former contains the main rules about
diagram editing, including e.g. the allowed shapes of each diagram node, the width of the
diagram edges, the diagram layout, etc. The tooling definition involves the toolbox, i.e. the
palette, with the shapes of a diagram. Both parts have to be defined carefully since they
comprise the final view of the user.

Creating an EMF model and then attaching it to a GEF editor is a difficult procedure. It
involves writing several lines of code for every simple connection between the two models.
Even if one could accomplish this, the final application would have several transparency
problems, e.g. changing the model would result in a non-compliant GEF that would have to
be changed manually. GMF, provided by Eclipse, is an interesting solution to the above
problem. The framework provides a straightforward way of combining the two models, EMF
and GEF. The framework allows creating the models in an isolated manner and combining
them by providing a mapping between the elements of the two models.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [15] of [61]

2.2.2.2 Workflow of Creating Diagram Editors

The components and models used during GMF-based development are shown in Figure 2.3.

Figure 2.3 Workflow of using GMF for creating Diagram Editors, as shown in [14]

As shown in this diagram, upon creating a GMF Project, we have to develop three different
parts of the system. The Domain Model is the core of the system; it is actually the ecore
model of the EMF. The two other parts, the Graphical Definition and the Tooling Definition,
are the two parts of the GEF analyzed in the previous subsection. Given the domain model,
GMF creates initial files for these two parts that have to be edited in order to provide the
necessary information for the diagram editor.

Upon creating the EMF and GEF parts, the most difficult step of this procedure is to develop
the Mapping Model. This is, however, the main facility provided by GMF. Using the
framework, the mapping model is created semi-automatically. Of course, the developer has
to be very careful about the mapping provided by the system. Generally, simple objects and
relations of the meta-model are safely automated. However, any slightly complex object
(e.g. an edge with a label) is usually not correctly mapped.

The Generator Model is the final model that has to be created. The model is initiated by the
framework according to the mapping model. In short, the generator model is the mapping
model including options for generating the plugin. Thus, any configurations such as file
extensions of the plugin, context menus, etc. have to be defined in this model.

The final step is to generate the diagram plugin. Although this is easily accomplished, any
other improvements have to be made on generated code so the models of the GMF should
be carefully designed.

Create GMF Project

Develop Domain
Model

*.ecore

Develop Graphical
Definition

*.gmfgraph

Develop Tooling
Definition

*.gmftool

Develop Mapping
Model

*.gmfmap

Create Generator
Model

*.gmfgen

Generate Diagram
Plugin

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [16] of [61]

2.3 Task Contributions and Progress beyond the State-of-the-art

As noted in the previous subsections, dynamic representations found in current literature
are not always capable of effectively describing the dynamic view of software systems.
Modelling the dynamic view of a system and designing a representation that allows
developers to describe it are two quite important contributions of this task. Additionally, the
design of a unified view of software projects represented using an aggregated ontology is
another meaningful contribution that effectively illustrates the expected outcome of WP3.
As part of working on these directions, we had to achieve significant progress beyond the
current state-of-the-art. In specific, the work on this task includes the following main
contributions:

• The design of a dynamic ontology that is used to represent the dynamic view of a
software project. This ontology covers the possible action-flow representations as
long as they are compatible with the RESTful paradigm.

• The development of a dynamic representation that is oriented towards the main
concepts of the RESTful paradigm. This representation is designed in the form of
storyboards, i.e. system scenarios described in the form of diagrams. As part of this
contribution, we can also distinguish the following progress points:

o Upon analysing the current state-of-the-art on dynamic representations, we
claim that this new diagram type is required since no other representation,
either graphical or textual, can describe the dynamic view of RESTful services
effectively. Current UML diagram types and textual representations are
oriented towards the Object Oriented paradigm; thus, they cannot describe
the resources of a RESTful service, or the actions and the properties on these
resources, without compromising their semantics or introducing verbosity.

o Since current graphical editors are not capable of handling the creation and
editing of storyboards, we design and implement a new tool to sufficiently
meet this requirement. Our tool allows designing storyboards based on a
robust non-verbose meta-model, since it is based on the well-known Eclipse
IDE. Additionally, the main prerequisites for the S-CASE tools are also met, as
our tool is open-source and cross-platform, while it allows coupling with
components supporting the XMI representations of Eclipse.

• The design of an aggregated ontology of software projects. This contribution is
actually a central element of S-CASE since it focuses on the main scope of this work
package. Using this ontology, we are now able to describe the main elements of a
RESTful system, while also preserving the connection between the system and its
requirements. Furthermore, this unified system representation shall form the basis
for designing the system using the Model-Driven Engineering (MDE) components of
S-CASE and the components for finding functionally equivalent web services.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [17] of [61]

3 Ontology for the Dynamic View of Software Projects

This Section concerns the design of an ontology for storing information derived from the
dynamic view of software projects. This ontology shall include information from storyboards,
and generally any dynamic information derived from other types of input (e.g. activity
diagrams).

Since ontologies provide a structured means of storing information and linked data, the use
of an ontology for our scenario seems well justified. System objects, actions, properties, etc.
can be mapped to Web Ontology Language (OWL) classes and properties6. Similarly to
previous deliverables, we use Protégé for visualizing and designing our ontology [15]. OWL
classes and individuals are drawn as rounded squares (with different colours), and properties
are drawn as arrows. The shapes and arrows have labels that hold the name of each class or
property, except from the has_subclass property (continuous arrow), which is given
unlabelled in order to avoid cluttering the visualizations.

The following subsections present the ontology for the dynamic view of the system and
illustrate its instantiation using examples.

3.1 Ontology Overview

The main elements of dynamic system representations are flows of actions among system
objects. Given that the OWL includes classes and properties, actions can be represented as
resources and flows can be described using properties. Additionally, the properties of
system objects can also be mapped to OWL properties.

3.1.1 Ontology Class Hierarchy

The class hierarchy of the ontology is shown in Figure 3.1. Anything entered in the ontology
(any owl:Thing) is a Concept. Instances of class Concept are further divided in the
types of Project, ActivityDiagram, AnyActivity, Actor, Action, Object,
Condition, Transition and Property.

Project refers to the project analyzed while ActivityDiagram stores each diagram of
the system. Note that ActivityDiagram covers all dynamic view diagrams of the
system, i.e. it is not limited to activity diagrams, but also storyboards and generally any
diagrams with dynamic flows of action. When instantiating the ontology, Project and
ActivityDiagram can be used to keep its structure reversible. Since each project has
several diagrams and each diagram has several other concepts (see next subsection for
relations), one can reconstruct the diagrams of the project with their respective concepts.

AnyActivity is one of the most central OWL classes of the ontology. It involves all
activities shown in a diagram. This class is further distinguished in the following OWL
subclasses:

6 Note that in the context of S-CASE, we use OWL since it is a well-known established standard of current
research and industry communities. For an extensive review of OWL languages and tools, the reader is referred
to the deliverable 4.1.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [18] of [61]

Figure 3.1 Dynamic Ontology Class Hierarchy

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [19] of [61]

• InitialActivity: refers to the initial state of the diagram. It does not have a
name but it holds the precondition of the diagram.

• Activity: any activity of the system, e.g. “Create bookmark”
• FinalActivity: the final state of the diagram that holds any postconditions

As noted, activities are the main building blocks of dynamic system representations. In most
cases, the information contained in an activity can be stored in several other concepts.
These concepts further instantiate the OWL classes Actor, Action, and Object. So, for
example, an Activity “Create bookmark” instantiates also the Action “create”
performed on the Object “bookmark” by the (implicit) Actor “user”. This derivation is
performed using NLP methods as described in deliverable 3.1 of this work package.

Furthermore, the OWL class Property is closely related to Activity. Any action of the
system may require one or more input properties. For instance, performing a “Create
bookmark” may require the newly added bookmark’s “name” or its “id” or both. In this case,
“name” and “id” are instances of class Property.

Another important building block of activity diagrams and storyboards are transitions.
Transitions are actually the elements that describe the flow of activities. The OWL class
Transition describes the flow from one instance of Activity to the next instance of
Activity as derived by the corresponding diagram. Each Transition may also have a
Condition (more on the connection of these OWL classes in the next subsection). Finally,
an instance of Condition can be one of the following classes:

• PreCondition: refers to the condition that has to be met for the diagram flow to
be possible. For example, “the user has to be logged in” in order to create a
bookmark.

• GuardCondition: a condition that “guards” the execution of an activity of the
system along with the corresponding positive answer, e.g. “Create tag” may be
guarded by the condition “does bookmark belong to the user? Yes”, while the
opposite GuardCondition “does bookmark belong to the user? No” shall not
allow executing the “Create tag” activity.

• PostCondition: includes criteria that have to be met after the final state of the
diagram

The aforementioned OWL classes cover all elements present in dynamic system
representations. The next subsection focuses more on the relations among these elements.

3.1.2 Ontology Properties

The properties of the ontology define the possible interactions between the different
classes. In the context of the ontology defined in this Section, we distinguish between two
types of properties: high-level properties and low-level properties. The former involve
interactions at inter-diagram level, whereas the latter involve relations between elements of
a diagram.

3.1.2.1 High-Level Ontology Properties

Concerning diagram-level, we define the properties shown in Table 3.1. As shown in that
Table, several properties are bidirectional.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [20] of [61]

Table 3.1 High-level Properties of the Dynamic Ontology

OWL Class Property OWL Class

Project project_has_diagram ActivityDiagram

ActivityDiagram is_diagram_of_project Project

ActivityDiagram diagram_has Actor,
AnyActivity,
Transition,
Property,
Condition

Actor,
AnyActivity,
Transition,
Property,
Condition

is_of_diagram ActivityDiagram

ActivityDiagram diagram_has_condition PreCondition,
PostCondition

PreCondition,
PostCondition

is_condition_of_diagram Requirement

The high-level properties shown in Table 3.1 cover the interactions among the main classes
of the ontology. In specific, each project can have one or more diagrams and each diagram
has to belong to a project. Additionally, each diagram may have a PreCondition and/or a
PostCondition. An instance of ActivityDiagram has elements of the five classes
Actor, AnyActivity, Transition, Property, and Condition. Note that Action
and Object are not included in this high-level view of the system since they are covered by
the low-level properties of the next paragraph. This is quite rational since they are not
actually elements of the diagram; instead, they are derived from its elements. In the case of
Actor, it is possible that it is given or not given by the diagram. For example, in activity
diagrams it is common to assume that the activities performed by the system are shaped as
rectangles whereas user activities are defined as labels on the diagram arrows. So, we keep
Actor as one of the main diagram classes to cover this case.

3.1.2.2 Low-Level Ontology Properties

With the term “low-level properties” we define the properties that cover the interactions
among the different ontology classes, excluding Project and ActivityDiagram. We
can further refine these properties in the ones defining the flow of activities in a diagram
and the ones defining the relations among the rest elements (including implicitly derived
elements, e.g. Action or Object). These properties are given in Table 3.2 and Table 3.3,
respectively.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [21] of [61]

Table 3.2 Low-level Properties of the Dynamic Ontology, for the Flow of a Diagram

OWL Class Property OWL Class

Activity activity_has_property Property

Property is_property_of_activity Activity

Transition has_source Activity,
InitialActivity

Activity,
InitialActivity

is_source_of Transition

Transition has_target Activity,
FinalActivity

Activity,
FinalActivity

is_target_of Transition

Transition has_condition GuardCondition

GuardCondition is_condition_of Transition

GuardCondition is_opposite_of GuardCondition

As shown in Table 3.2, the different relations of ontology classes are actually forming the
main flow as derived from diagram elements. Thus, Activity instances are connected
with each other via instances of type Transition. Any Transition has a source and a
target Activity (properties has_source and has_target, respectively), and it may
also have a GuardCondition (property has_condition). Finally, any Activity is
related to instances of type Property, while any GuardCondition has an opposite one,
connected to each other via the bidirectional property is_opposite_of. This flow is also
illustrated in Figure 3.2.

Figure 3.2 Low-level Ontology Properties depicting the Flow of Activities

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [22] of [61]

Finally, the properties (and their reverse) of the implicitly derived elements for each diagram
are shown in Table 3.3.

Table 3.3 Low-level Properties of the Dynamic Ontology, for the Implicit Elements of a Diagram

OWL Class Property OWL Class

Activity activity_has_action Action

Action is_action_of_activity Activity

Activity activity_has_object Object

Object is_object_of_activity Activity

Activity,
Condition

has_actor Actor

Actor is_actor_of Activity,
Condition

As shown in Table 3.3, any Activity is connected to an Actor, an Action, and an
Object via the corresponding properties has_actor, activity_has_action, and
activity_has_object. Note also that the has_actor property connects
Condition to Actor, since certain diagrams may also imply an actor for a condition, e.g.
“Does the user want to continue?” has a user actor, whereas “Does the database contain x?”
implies a system actor.

3.2 Example Instances

This Section illustrates the use of the ontology for storing information derived from an
activity diagram. Note that information extraction from activity diagrams is handled in
deliverable 3.3, so in this Section we provide an example for a manually extracted diagram.
In Section 4, one can find a full example of deriving information from the storyboards of a
software project and instantiating the ontology.

The example we use is the activity diagram of Figure 2.1. In this diagram, one can find
several common elements of activity diagrams. At first, we can see there are 6 activities and
2 conditions, so we can add these to the ontology. Additionally, we add 2 more activities for
the classes InitialActivity and FinalActivity. Note that the diagram has no
preconditions or postconditions.

Transition naming follows the FROM__SourceActivity__TO__TargetActivity
convention. Additionally, the instances of GuardCondition follow the convention
Condition__PATH__Predicate. Finally, we derive the instances of Actor, Action,
and Object. The instantiation of the ontology for the activity diagram of Figure 2.1 is
shown in Figure 3.3.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [23] of [61]

Figure 3.3 Example Ontology Instantiation of the Activity Diagram “Create bookmark” of Project Restmarks

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [24] of [61]

Concerning the properties given in the previous subsection, we provide here an example for
the properties surrounding the action “Provide bookmark URL”. These properties are shown
in Table 3.4.

Table 3.4 Example Instantiated Properties for the Action “Provide bookmark URL” of the Diagram “Create

Bookmark” of Project Restmarks

OWL Individual Property OWL Individual

Provide_bookmark_URL is_source_of FROM__Provide_bookm
ark_URL__TO__Create
_bookmark

FROM__Provide_bookm
ark_URL__TO__Create
_bookmark

has_source Provide_bookmark_URL

Provide_bookmark_URL is_target_of FROM__Login_to_acco
unt__TO__Provide_bo
okmark_URL

FROM__Login_to_acco
unt__TO__Provide_bo
okmark_URL

has_target Provide_bookmark_URL

Provide_bookmark_URL is_target_of FROM__StartNode__TO
__Provide_bookmark_
URL

FROM__StartNode__TO
__Provide_bookmark_
URL

has_target Provide_bookmark_URL

Provide_bookmark_URL activity_has_action provide

Provide is_action_of_activity Provide_bookmark_URL

Provide_bookmark_URL activity_has_object bookmark_URL

bookmark_URL is_object_of_activity Provide_bookmark_URL

Provide_bookmark_URL has_actor user

User is_actor_of Provide_bookmark_URL

As shown in Table 3.4, the Activity Provide_bookmark_URL is the source of two
transitions (one for each flow coming from the “Logged in” condition) and the target of one
transition (towards the “Create bookmark” action). Additionally, the Actor, Action, and
Object are found (user, provide, and bookmark_URL) and connected to the activity.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [25] of [61]

4 Storyboard Creator

As noted in Section 2, we require a representation for the dynamic view of the system that is
more compliant with the RESTful paradigm compared to common UML representations. In
this Section, we present this representation in the form of storyboards. Storyboards are
dynamic system scenarios that describe common flows of action in a software system.

As part of work done in Task 3.2, we designed and implemented a tool for creating
storyboards. Our tool, created using Eclipse GMF (see Section 2), is named Storyboard
Creator. The following subsections provide the main architecture of the Storyboard Creator
and present the models designed for the application. These models actually provide the
meta-model of storyboards, i.e. the elements, the connections, and the rules for creating
storyboards. After that, the usage of the tool is illustrated using example storyboards and
the respective ontology representations.

Subsection 4.1 presents the requirements for the Storyboard Creator. The information in
subsections 4.2 and 4.3 is given thoroughly in the Technical Manual [16] and the User
Manual [17] of Storyboard Creator respectively. In this deliverable, we provide an analysis of
the architecture and functionality of the tool to illustrate its usage on Task 3.2.

4.1 Requirements of the Storyboard Creator

We mainly focus on REST services, so the basic building blocks of a storyboard are actions
performed on objects (resources) of the system. Each action can either be a CRUD action
(i.e. Create, Read, Update, Delete) or a non-CRUD action, and it can contain an arbitrary
number of properties, which can be interpreted as parameters of this action. Actions
connect to each other via directional edges. Finally, storyboards contain conditions that
represent preconditions for the actions following them. The functional requirements for the
Storyboard Creator are shown in Figure 4.1.

Figure 4.1 Functional Requirements of the Storyboard Creator

Apart from its functional part, which is to allow developers to specify dynamic usage
scenarios of their system, the tool must also have certain non-functional features, e.g. user

 FR1. The user must be able to select CRUD actions of activities
 FR2. The user must be able to create new action by providing a non-CRUD verb and the

corresponding object of the system.
 FR3. The user must be able to change the type of an action, including one of the four CRUD

types or a non-CRUD action.
 FR4. The user must be able to add one or more properties to each action.
 FR5. The user must be able to add conditions that have two output paths.
 FR6. The user must be able to add preconditions to each diagram.
 FR7. Each storyboard must have an initial and a final node.
 FR8. A storyboard can be an action for another storyboard (nested storyboards).
 FR9. The user must be able to modify the properties of each entity of the system, including

its name, its description, and other relevant to each object type.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [26] of [61]

friendliness. The non-functional requirements for the Storyboard Creator are summarized in
Figure 4.2.

Figure 4.2 Non-Functional Requirements of the Storyboard Creator

Since we selected GMF to design our tool, most non-functional requirements are met, thus
we focus on the functional aspects of the tool.

4.2 Design of the Storyboard Creator

4.2.1 Architecture

As noted in Section 2, the components used during GMF development reflect the models of
EMF and GEF. In the case of Storyboard Creator, we created the models shown in Figure 4.3.

Figure 4.3 GFM Dashboard Architecture for the Storyboard Creator

Figure 4.3 shows the GMF dashboard of the Eclipse IDE. As shown, the core of the GMF
development procedure is the Domain Model, which is actually the meta-model to be used
for the storyboard models. Using the capabilities of GMF, we have designed this model and
generated the Domain Gen(eration) Model. The latter is actually a representation generated
by the Domain Model which is however suitable for interacting with the final application.
This is actually required to account for model validation.

NFR1. The user interface must be intuitive.
NFR2. The user must be presented with different options for each node of the storyboard

(action, property, or condition), including copying it, modifying it (e.g. altering its
multiplicity) and deleting it.

NFR3. The diagrams must be editable either by using context menus or by using properties
panes.

NFR4. The system must output the storyboards in a comprehensive XML format that will
contain the model of the diagram.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [27] of [61]

After that, we designed the Graphical Def(inition) Model and the Tooling Def(inition) Model
using also the deriving capabilities of GMF. These two models along with the Domain Model
were combined in order to produce the Mapping Model.

After reviewing the Mapping Model and making certain important changes, we transformed
it to the final Diagram Editor Gen(eration) Model. Note that the Eclipse GMF allows
developing diagram editors either as Eclipse plugins or as standalone RCP applications (i.e.
applications including the necessary parts of the Eclipse IDE to execute). We selected to
deploy our application as an Eclipse plugin since it is quite flexible and it allows developers to
select what to include in their projects. Finally, upon changing certain options concerning the
appearance and behaviour of our editor plugin, we generated the diagram editor. The
following subsection presents the different models designed for the Storyboard Creator.

4.2.2 Models

4.2.2.1 Domain Model

The domain model is visualized in Figure 4.4.

Figure 4.4 Storyboard Creator Domain Model

The most high-level meta-class of the model is the StoryboardDiagram. The latter contains
all the other classes of the model along with the respective multiplicities. In specific, it
contains exactly 1 StartNode (storyboardstartnode) and 1 EndNode (storyboardendnode), 0
or more Actions (storyboardactions), 0 or more Properties (storyboardproperties) of Actions,
and 0 or more Conditions (storyboardconditions). Additionally, it contains 0 or more
Storyboards (storyboardstoryboards), allowing nested storyboards.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [28] of [61]

Most elements of a storyboard belong to one of the subclasses of Node. Actions and
Storyboards both are subclasses of ActionNode, which is a subclass of Node that has a name
and connects to exactly one Node of the diagram (nextNode). This relationship creates the
sequence of Nodes that form a diagram. Note also that Action has a type, which can be one
of Create, Read, Update, Delete, and Other (ActionEnum). Any Action connects to 0 or more
Properties (properties).

Conditions connect to nodes via ConditionPaths. Unlike simple paths, ConditionPaths are
defined with a name variable in order to keep the consequent of the Condition. Each
condition has exactly 2 ConditionPaths (conditionPaths), and each ConditionPath connects to
exactly 1 diagram Node (nextConditionNode).

Note that EndNode is also a subclass of Node, whereas StartNode is not since no other Node
can connect to it. StartNode also contains a string field for any Precondition of the diagram
and connects to exactly one Node (firstNode).

Most elements of the domain model also have a validate function. These functions will be
used in order to check whether the diagrams created by the user are valid. Finally, the
domain gen model is actually quite similar to the domain model, the main difference being
its xml structure.

4.2.2.2 Tooling Model

The tooling model is quite simple. A screenshot of the model in the GMFTool Model Editor of
Eclipse is shown in Figure 4.5.

(a) (b)
Figure 4.5 Storyboard Creator Tooling Model and Palette

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [29] of [61]

As shown in Figure 4.5a, creating the tooling model involves selecting which objects shall
have a tool in the palette and their respective images. Storyboards, Properties, Actions,
Conditions, StartNode and EndNode all have a respective tool. Concerning paths, both Path
and ConditionPath objects have the same tool in order to make the diagram editor simple. In
Figure 4.5b, one can see the final resulting palette.

4.2.2.3 Graphical Model

The graphical model handles the appearance of all the objects of the diagrams, including
their shape, their behaviour (e.g. resizing), their connections with other shapes, either nodes
or edges (e.g. where paths are connected), etc. The graphical model contains Nodes and
Connections. Each Node or Connection has a respective Figure Descriptor.

The Figure Descriptor contains all the information about the figure of each diagram element,
i.e. its shape, the size of the element, any labels etc. For example, the Property element has
a figure named PropertyFigure, which is of type Rectangle. It also has a Diagram Label
named PropertyName. Diagram Labels are actually defined separately and then connected
with the other elements. Edges also have their Figure, which is in most cases a simple
polyline edge (Polyline Decoration). The ConditionPathFigure, however, also contains the
ConditionPathName label. Concerning Storyboard Creator, we defined several figures, while
several of these figures are also customized to meet the requirements of our tool. These are
analyzed in the following paragraphs.

At first, the Property Figure is a simple Rectangle with a label and the Action Figure is a
simple Ellipse with a label. The two elements are shown in Figure 4.6a and Figure 4.6b
respectively.

(a) (b) (c)

(d) (e) (f)

Figure 4.6 Storyboard Creator Figure Descriptors

The Condition Figure and the Storyboard Figure are Scalable Polygons. Scalable Polygons are
GEF polygons that allow selecting several points in order to create the shape desired by the
developer. In this case, we provided the points so that the Condition Figure is a
parallelogram (Figure 4.6c) and the Storyboard Figure is an isosceles trapezoid (Figure 4.6d).

Finally, Figure 4.6e and Figure 4.6f present the StartNode Figure and the EndNode Figure
respectively. Note that for the EndNode Figure, we had to create a custom figure since the
circle with the dot in the middle is not defined as a default GEF figure.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [30] of [61]

4.2.3 Combining the Models and Generating the Tool

The mapping model is the result of the combination of the three models, the domain model,
the tooling model, and the graphical model. A screenshot of the model in the GMFMap
Model Editor of Eclipse is shown in Figure 4.7.

Figure 4.7 Storyboard Creator Mapping Model

The mapping model contains the three other models, and also contains a mapping for each
element of the diagram. The Canvas Mapping refers to the root of the diagram, while any
other elements are shown either as Node Mappings or as Link Mappings. Additionally, any
label mappings are included in the respective nodes or links (e.g. the Link Mapping for a
ConditionPath includes also a mapping for its name).

Each mapping has a reference to the EMF ecore model and a reference to the GEF element
from the graphical model. In addition, the tool for any element is also mapped to it.

Upon creating the mapping model, we generate the Diagram Editor Generation Model. This
model is used to generate the source code of our tool. Most elements of our diagram editor
have already been defined up to this point. The Diagram Editor Generation Model contains a
class for every element of the diagram. Thus, e.g., ActionEditPart is a class that refers to
Action and functions that correspond to creating, editing, or accessing an Action and its
elements (e.g. its name).

Apart from these elements, the model also contains options concerning the palette of the
diagram editor, the context menu and the property and preference pages. The default
options for most of these settings are usually adequate. In our case, we added two new
menu entries for importing and exporting diagrams and we tweaked the file settings so that
our tool provides with one file for each storyboard having the .sbd extension.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [31] of [61]

4.2.4 Refining the Storyboard Creator

Upon generating the tool we had to make some final adjustments. These adjustments
concerned the appearance and the validation procedure of Storyboard Creator.

Concerning appearance, most elements have already been defined in paragraphs 4.2.2.2 and
4.2.2.3 that concern the tooling and graphical models of GEF respectively. However, in our
case, we wanted to have a personal feel and look in the Storyboard Creator. Thus, we
overrode the source code of the two models in order to create the gradient effect of the
figures.

Concerning functionality, Storyboard Creator must also have the capability of validating the
models (diagrams) created by the user. Certain validation procedures are immediately
enforced by GMF. Thus, for example, any ActionNode must connect to exactly one Node.
Trying to connect to more Nodes is not allowed by the editor. In several cases, however, this
form of validation is not possible. For example, checking that a Property belongs to exactly
one Action requires checking the whole diagram model since it cannot be checked using only
the domain model. Even when some rules are checked by GMF (e.g. an Action with no
name), the default validation messages are sometimes hard to understand, so we overrode
them too. Validation rules are checked by overriding the validate function of the generated
code model.

4.2.5 Storyboard Creator File Model

Given the domain model and the diagram elements, a file model was defined for the
Storyboard Creator. The file extension is .sbd and the file is xml-based. An example diagram
and the corresponding .sbd are shown in Figure 4.8 and Figure 4.9 respectively.

Figure 4.8 Example Storyboard Diagram for the Storyboard “Add bookmark”

As shown in these figures, the model of a storyboard diagram is contained in the xml tag
auth.storyboards:StoryboardDiagram. Inside this element there are several xml elements,
defined by their corresponding tags. These are defined according to the domain model
shown in paragraph 4.2.2.1. Thus, e.g., the tag storyboardactions is used in order to define
an Action, i.e. an object that has an xmi:type equal to auth.storyboards:Action. Note that
any object of the system has a unique xmi:id. Any concept of the domain model is simply
stored in the sbd following the hierarchy defined in the ecore file. Hence, Actions have name,

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [32] of [61]

nextNode (defined as xmi:id of the upcoming Node) and properties (defined as array of
xmi:ids), while Properties only have a name. Accordingly, StartNode and EndNode are
defined with the former having a Precondition and a firstNode, while Condition has a name
as well as two conditionPath elements. The conditionPath elements each have a name and a
nextConditionNode property.

<xmi:XMI xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:auth.storyboards="http:///auth/storyboards.ecore"
 xmlns:notation="http://www.eclipse.org/gmf/runtime/1.0.2/notation">
 <auth.storyboards:StoryboardDiagram xmi:id="_PjpmkAA8EeSXd67c3thk-A">
 <storyboardactions xmi:type="auth.storyboards:Action"
 xmi:id="_T_8ywAA8EeSXd67c3thk-A"
 nextNode="_YvwJwAA8EeSXd67c3thk-A" name="Create bookmark"
 properties="_VyEQoAA8EeSXd67c3thk-A _wL8C0AdMEeSf0evSNLNfeQ"/>
 <storyboardactions xmi:type="auth.storyboards:Action"
 xmi:id="_bKxasAA8EeSXd67c3thk-A"
 nextNode="_gPGQMAA8EeSXd67c3thk-A" name="Add tag"
 properties="_ccJjAAA8EeSXd67c3thk-A"/>
 <storyboardproperties xmi:type="auth.storyboards:Property"
 xmi:id="_VyEQoAA8EeSXd67c3thk-A" name="Bookmark URL"/>
 <storyboardproperties xmi:type="auth.storyboards:Property"
 xmi:id="_ccJjAAA8EeSXd67c3thk-A" name="Tag text"/>
 <storyboardproperties xmi:type="auth.storyboards:Property"
 xmi:id="_wL8C0AdMEeSf0evSNLNfeQ" name="Bookmark Name"/>
 <storyboardconditions xmi:type="auth.storyboards:Condition"
 xmi:id="_YvwJwAA8EeSXd67c3thk-A" name="User wants to add tag?">
 <conditionPaths xmi:type="auth.storyboards:ConditionPath"
 xmi:id="_fRW1kAA8EeSXd67c3thk-A" name="Yes"
 nextConditionNode="_bKxasAA8EeSXd67c3thk-A"/>
 <conditionPaths xmi:type="auth.storyboards:ConditionPath"
 xmi:id="_hIFGoAA8EeSXd67c3thk-A" name="No"
 nextConditionNode="_gPGQMAA8EeSXd67c3thk-A"/>
 </storyboardconditions>
 <storyboardstartnode xmi:type="auth.storyboards:StartNode"
 xmi:id="_QcesAAA8EeSXd67c3thk-A" Precondition="User is logged in"
 firstNode="_T_8ywAA8EeSXd67c3thk-A"/>
 <storyboardendnode xmi:type="auth.storyboards:EndNode"
 xmi:id="_gPGQMAA8EeSXd67c3thk-A"/>
 </auth.storyboards:StoryboardDiagram>
 <notation:Diagram xmi:id="_PkGSgAA8EeSXd67c3thk-A" type="Storyboards"
 element="_PjpmkAA8EeSXd67c3thk-A" name="Add Bookmark.sbd"
 measurementUnit="Pixel">
 ...
 </notation:Diagram>
</xmi:XMI>

Figure 4.9 SBD file for the Storyboard Diagram “Add bookmark”

Finally, note that the sbd representation contains also information about the diagram (i.e.
position of nodes and edges, size, etc.). This information is stored in the elements of the
notation:Diagram xml tag. However, this tag contains no information about the model itself.
This is very important since it allows for importing and exporting diagrams using the
auth.storyboards:StoryboardDiagram of the .sbd file and generating the notation:Diagram.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [33] of [61]

4.3 Usage of the Storyboard Creator

4.3.1 Features

The following website has information about the Eclipse Update Site of Storyboard Creator:

http://s-case.github.io/

One can find detailed instructions on installing and updating the tool in the User Manual
[17]. Upon installing the tool, the user is presented with the screen shown in Figure 4.10.

Figure 4.10 Main Screen of Storyboard Creator

As shown in this screenshot, the main views used in Storyboard Creator are:

• The Canvas, in the centre of the screen, where the storyboard diagrams are shown
and edited;

• The Palette that includes the possible shapes on the right;
• The Project Explorer on the left that shows the open and closed Storyboard Creator

projects;
• The outline in the lower left part of the screen that allows viewing the canvas and

navigating (especially when the diagrams are large);
• The Properties tab in the lower part of Eclipse that allows changing specific values for

properties of diagram elements;
• The Problems informational tab in the lower part of Eclipse that shows any validation

problems for the diagrams.

Note that the user is able to change the position of these tabs as he/she would normally do
in the Eclipse IDE.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [34] of [61]

4.3.2 Usage and Validation

Storyboards are stored in Eclipse projects. So at first, one has to create a project by selecting
the option File and then New and Project…. The process for creating a storyboard is similar.
The user navigates from the New menu and selects File and Storyboards Diagram.

A new diagram is populated with nodes and paths. There are 6 available nodes. Storyboard
and Action are similar within the same diagram. Actions, however, represent atomic
operations, whereas Storyboards must have their own diagram consisting possibly of several
actions. One can also select the type of the action, out of the 4 CRUD types, in the Properties
editor of Eclipse. Properties are interpreted as parameters of Actions. They have to be
connected to some Action of the diagram. Conditions can be used to split the main flow of a
storyboard. Each condition must have exactly two outgoing paths. Each Storyboard Diagram
must have exactly one StartNode and one EndNode. The StartNode is the first node of the
diagram and the EndNode is the last node of the diagram. Finally, Path is used to connect
the nodes of the diagram to one another. Paths have one direction, and in the case of an
outgoing Condition path, they also have a label.

Consider an example of a storyboard diagram with errors shown in Figure 4.11.

Figure 4.11 Validation Example of Storyboard Creator

In this example, the start node does not connect to any node, the Action “Add tag” does not
connect to any node, and there is no connection (i.e. possible path) to the Action “Create
Bookmark”. In addition, a condition path of Condition “User wants to add tag?” does not
have a name. All these errors are reported using messages in the Problems view of Eclipse.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [35] of [61]

4.3.3 Ontology Instantiation

4.3.3.1 Example Instantiation for a storyboard

Mapping storyboard diagrams to the ontology is straightforward. At first, storyboard actions
are mapped to the OWL class Activity and they are further split into instances of
Action and Object. Properties become instances of the Property class and they are
connected with the respective Activity instances via the activity_has_property
relation. Similarly to activity diagrams, the paths and the condition paths of storyboards
become instances of Transition, while the storyboard conditions split into two opposite
GuardConditions.

An example instantiation for the “Add Bookmark” storyboard of Figure 4.8 is shown in Figure
4.12. Table 4.1 shows example instantiated properties for the Action “Create bookmark”.

Table 4.1 Instantiated Properties for the Action “Create bookmark” of the Storyboard “Add Bookmark”

OWL Individual Property OWL Individual

Create_bookmark is_source_of FROM__Create_bookma
rk__TO__Add_tag

FROM__Create_bookma
rk__TO__Add_tag

has_source Create_bookmark

Create_bookmark is_source_of FROM__Create_bookma
rk__TO__EndNode

FROM__
Create_bookma
rk__TO__EndNode

has_source Create_bookmark

Create_bookmark is_target_of FROM__StartNode__TO
__Create_bookmark

FROM__StartNode__TO
__Create_bookmark

has_target Create_bookmark

Create_bookmark activity_has_action provide

Provide is_action_of_activity Create_bookmark

Create_bookmark activity_has_object bookmark_URL

bookmark_URL is_object_of_activity Create_bookmark

Create_bookmark activity_has_property Bookmark_Name

Bookmark_Name is_property_of_activity Create_bookmark

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [36] of [61]

Figure 4.12 Example Ontology Instantiation of the Storyboard “Add Bookmark” of Project Restmarks

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [37] of [61]

One can spot several differences between the instantiated ontology of Figure 4.12 and the
one of Figure 3.3. The storyboard instantiation is a better fit to the RESTful paradigm.
Properties are now easily identifiable since they are explicitly declared in storyboards.
Therefore, actions are also correctly identified since they are also storyboard elements.
Additionally, the CRUD verb type of Action is also declared in storyboard diagrams.

Finally, note that the ontology instantiation shown in Figure 4.12 is fully reversible. The owl
file has a one-to-one mapping to the .sbd file of Figure 4.9. The ontology provides the
functionality for retrieving the elements, so the auth.storyboards:StoryboardDiagram XMI
element of the .sbd file is created. After that, Storyboard Creator allows generating the
notation:Diagram part of the .sbd to also make it viewable in the graphical editor.

4.3.3.2 Example Instantiation for a software project

Upon providing an example for a specific storyboard diagram, it is straightforward to expand
it to cover all the diagrams of a software project. In certain scenarios, the developer could
provide the whole dynamic view of his/her project in the form of storyboards. Of course, this
may not always be possible, however we shall provide an example including several dynamic
scenarios in the form of storyboards to present a clear dynamic view for a project.

For project Restmarks [2], we are able to define the following dynamic scenarios:

1. Add Bookmark
The user adds a bookmark to his/her collection and optionally adds a tag to the newly
added bookmark.

2. Create account
The user creates a new account.

3. Delete Bookmark
The user deletes one of his/her bookmarks.

4. Login to account
The user logins to his/her account.

5. Search Bookmark by Tag System Wide
The user searches for bookmarks by giving the name of a tag. The search involves all
public bookmarks.

6. Search Bookmark by Tag User Wide
The user searches for bookmarks by giving the name of a tag. The search a user’s
public and private bookmarks.

7. Show Bookmark
The system shows a specific bookmark to the user.

8. Update Bookmark
The user updates the information on one of his/her bookmarks.

Note that these scenarios may involve several conditions, e.g. the user has to be logged in to
delete a bookmark. Additionally, the project is complex enough since it also has nested
storyboards, e.g. scenario 7 involves logging in – scenario 4. In the context of this
deliverable, we collected these storyboards for project Restmarks [2] and instantiated the
dynamic ontology. The instantiation is shown in Figure 4.13.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [38] of [61]

Figure 4.13 Example Ontology Instantiation of the Storyboards of Project Restmarks

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [39] of [61]

The instantiation shown in Figure 4.13 may seem rather complex, however it is in fact not
any more complex than the single-diagram example (Figure 4.12). Any project actually has
several instances of Activity that are further analysed to Action and Object. Along
with the instances of Condition, Transition (not shown in Figure 4.13 to avoid
cluttering the Figure), and Property, the elements of the dynamic view of Restmarks are
complete. Finally, using the diagram_has/is_of_diagram properties, one can easily
find the diagram that describes any instance of the ontology.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [40] of [61]

5 Aggregated Ontology of Software Projects

This Section concerns the design of an ontology for storing information derived from the
static and dynamic views of software projects. This ontology is an in-between stage between
the work performed in WP3 for multimodal requirements extraction and the rest of S-CASE.
In specific, both the MDE components and the components for finding functionally
equivalent web services are connected to this ontology.

In the following subsections, we provide an overview of the ontology, and explain how it can
be instantiated using the stored ontology data for the static and the dynamic view of the
system. An example instantiation of the ontology is provided, and an API for retrieving
information from the ontology is described, and tested using a RESTful representation.

5.1 Ontology Overview

The elements of this ontology actually form an initial version of the Computationally
Independent Model (CIM) of the software project. Thus, the main building block of this
ontology is the RESTful resource. Additionally, since resources are created, retrieved, and
deleted via actions, the ontology includes the main actions that are performed on resources,
as well as any parameters required for these actions. Finally, note that S-CASE not only
allows forming a software prototype using MDE, but it also involves finding and exploiting
web service resources, external to the main system. These are also handled by the ontology.

5.1.1 Ontology Class Hierarchy

The class hierarchy of the aggregated ontology is shown in Figure 5.1. Anything entered in
the ontology is a Concept. Instances of Concept are further divided in four main classes:
Project, Requirement, ActivityDiagram, and Element.

Project refers to the software project instantiated in the ontology. Classes
Requirement and ActivityDiagram are used to hold the corresponding
requirements and diagrams of the static and the dynamic ontology respectively. Note that
the instances of these two classes are also used in order to keep track of the source of each
element in the ontology. In other words, they can be used as connectors of the aggregated
ontology to the static and dynamic ontologies.

Any other Concept of the ontology is an Element of the software project. Instances of
type Element are further divided into the following subclasses:

• Activity: an activity of the system, e.g. “Create bookmark”
• Condition: a condition that has to be met for an activity to be executed, e.g. “The

user must be logged in”
• Resource: a resource, which is the building block of any RESTful system. Examples

for Restmarks include “bookmark” or “tag”.
• Action: a CRUD action, which is performed on a resource, as described by the

corresponding activity. For example, the activity “Create bookmark” implies an action
“create” on the resource “bookmark”.

• Property: a parameter required for a specific activity, e.g. the parameter
“bookmark name” may be required for the activity “Create bookmark”.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [41] of [61]

Figure 5.1 Aggregated Ontology Class Hierarchy

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [42] of [61]

• Representation: a formal “manual sheet” required for calling external web
services to acquire a specific “external” resource. Given, e.g., a resource “wordmap”
that is given by an external web service (e.g. “Wordmap Unlimited”), the instance of
this class holds two representations for input and output. These representations
would belong to the following subclasses:

o InputRepresentation: that holds information about how to call the
external web service, e.g. via a GET or a POST? Using what arguments?

o OutputRepresentation: that explains the response of the web service,
e.g. does it return JSON or XML?

5.1.2 Ontology Properties

We distinguish among high-level and low-level properties. The former refer to properties
defining interactions between classes Project, Requirement, ActivityDiagram,
Element, whereas the latter refer to interactions among Element instances.

5.1.2.1 High-Level Ontology Properties

We define the high-level properties shown in Table 5.1.

Table 5.1 High-level Properties of the Aggregated Ontology

OWL Class Property OWL Class

Project has_requirement Requirement

Requirement is_requirement_of Project

Project has_activity_diagram ActivityDiagram

ActivityDiagram is_activity_diagram_of Project

Project has_element Element

Element is_element_of Project

Requirement,
ActivityDiagram

contains_element Element

Element element_is_contained_in Requirement,
ActivityDiagram

The high-level properties ensure that the aggregated ontology covers all the requirements
and diagrams of the static and the dynamic view of software projects. Additionally, the two
properties contains_element and element_is_contained_in ensure that any
element of the diagram is traceable in the other two ontologies. Given, e.g., the activity
”Create account”, we may trace it back to the corresponding instance of the static ontology
(of deliverable 3.1) and find out it has been described by functional requirement FR1.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [43] of [61]

5.1.2.2 Low-Level Ontology Properties

The low-level properties are very important since they cover the main structure of the
software project. The instances of the class Element along with these properties have to be
as expressive as possible since they will be used to form the CIM of the project. The low-level
properties of the aggregated ontology are shown in Table 5.2.

Table 5.2 Low-level Properties of the Aggregated Ontology

OWL Class Property OWL Class

Resource has_activity Activity

Activity is_activity_of Resource

Resource has_property Property

Property is_property_of Resource

Resource has_representation Representation

Representation is_representation_of Resource

Activity has_action Action

Action is_action_of Activity

Activity has_condition Condition

Property is_condition_of Activity

Activity has_next_activity Activity

Activity has_previous_activity Activity

As shown in Table 5.2, the relations of the ontology classes are formed around two main
subclasses, Resource and Activity. This is quite expected since these two elements
form the basis of a RESTful system. Resources and the respective activities are prototyped by
the S-CASE MDE engine. Any system Resource may be connected to instances of type
Property and Activity, using the properties has_property/is_property_of
and has_activity/is_activity_of respectively. The Representation of each
Resource must also be connected to it (via the properties has_representation/
is_representation_of. Finally, class Activity is connected to instances of type
Action (via the properties has_action/is_action_of) and of type Condition (via
the properties has_condition/is_condition_of), since it is necessary to keep track
of the CRUD verbs to be used as well as any conditions that have to be met in order for the
activity to be valid. Transitions are handled using has_next_activity/
has_previous_activity. These low-level properties are also visualized in Figure 5.2,
where it is clear that Resource and Activity have central roles in the aggregated ontology.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [44] of [61]

Figure 5.2 Low-level Aggregated Ontology Properties

5.2 Ontology Linking

As already noted in this Section, the aggregated ontology is instantiated using the
information provided by the static and dynamic ontologies of software projects. In the
following subsections we provide a mapping for instantiating the ontology, while its
instantiation is further illustrated using an example.

5.2.1 Linking the Static and Dynamic Ontologies

The static ontology of deliverable 3.1 contains several classes that refer to the static view of
the system. Among them, we focus on actions performed on objects and any properties of
these objects. In the static ontology, these elements are represented by the OWL classes
OperationType, object, and property. Concerning the dynamic elements of a
software system, the corresponding ontology covers not only actions, objects, and
properties, but also the conditions of actions. The corresponding OWL classes are Action,
Object, Property, and GuardCondition.

Apart from the above classes, we also keep track of the Project that is instantiated, as
well as the instances of type Requirement and ActivityDiagram derived from the
static and dynamic ontologies respectively. These three classes ensure that our ontologies
are traceable and strongly linked to one another.

The mapping of the static and the dynamic ontologies to the aggregated ontology is shown
in Figure 5.3. As shown in this Figure, Requirement and ActivityDiagram are simply
propagated to the aggregated ontology, while Project is used to ensure that the two
ontology instantiation refer to the same project.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [45] of [61]

Figure 5.3 Mapping from the Static and Dynamic Ontologies to the Aggregated Ontology

Concept
 Project
 Requirement
 OperationType
 action
 emergence
 ownership
 state
 ThingType
 actor
 external_system
 system
 useractor
 object
 goal
 source
 theme
 property
 direction
 extent
 location
 manner
 modality
 time

Static Ontology

Concept
 Project
 ActivityDiagram
 Actor
 AnyActivity
 InitialActivity
 Activity
 FinalActivity
 Action
 Condition
 GuardCondition
 PreCondition
 PostCondition
 Object
 Property
 Transition

Dynamic Ontology

Concept
 Project
 ActivityDiagram
 Requirement
 Element
 Representation
 InputRepresentation
 OutputRepresentation
 Activity
 Condition
 Resource
 Property

Aggregated Ontology

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [46] of [61]

Concerning the remaining classes of the aggregated ontology, these require merging the
elements from the two ontologies. Thus, any object of the static ontology and any
Object of the dynamic ontology are added to the aggregated ontology one after another.
If at any point an instance already exists in the aggregated ontology then it is simply not
added. However, any properties of this instance are also added (again if they do not exist);
this ensures that the ontology is fully descriptive, yet without any redundant information.

The mapping of OWL classes from the static and dynamic ontologies to the aggregated
ontology is shown in Table 5.3.

Table 5.3 Mapping of OWL classes from the Static and Dynamic Ontologies to the Aggregated Ontology

OWL Class of Static Ontology OWL Class of Dynamic Ontology OWL Class of Aggregated Ontology

Project Project Project

Requirement - Requirement

- ActivityDiagram ActivityDiagram

OperationType Action Activity

- GuardCondition Condition

object Object Resource

property Property Property

As mentioned above, properties are mapped after the respective classes have been mapped.
The respective mapping for OWL properties is shown in Table 5.4.

Table 5.4 Mapping of OWL properties from the Static and Dynamic Ontologies to the Aggregated Ontology

OWL Property of Static
Ontology

OWL Property of Dynamic
Ontology

OWL Property of Aggregated
Ontology

project_has_requirement - has_requirement

is_of_project - is_requirement_of

- project_has_diagram has_activity_diagram

- is_diagram_of_project is_activity_diagram_of

requirement_consists_of diagram_has contains_element

consist_requirement is_of_diagram element_is_contained_in

receives_action is_object_of_activity has_activity

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [47] of [61]

acts_on activity_has_object is_activity_of

has_property activity_has_property* has_property

is_property_of is_property_of_activity* is_property_of

- activity_has_action has_action

- is_action_of_activity is_action_of

- has_condition* has_condition

- is_condition_of* is_condition_of

- has_target has_next_activity

- has_source has_previous_activity

*derived property

Note that some properties are not directly mapped among the ontologies. In such cases they
are derived from intermediate instances. For example, the aggregated ontology property
has_property is directed from Resource to Property. In the case of the dynamic
ontology, however, properties are connected to activities. Thus, for any Activity, e.g.
“Create bookmark”, we have to first find the respective Object (“bookmark”) and then
upon adding it to the aggregated ontology, we have to find the Property instances of the
Activity (e.g. “bookmark name”) and add them to the ontology along with the respective
connection. This also holds for has_condition/is_condition_of, which are
instantiated using the instances of GuardCondition of the preceding Transition.

Finally, the two properties that refer to the connection of Project to Element,
has_element and is_element_of, are derived from contains_element and
element_is_contained_in at the time of instantiating the ontology. Furthermore,
the has_representation/is_representation_of properties are instantiated for
external web services, thus they are not mapped to the static and dynamic ontologies.

5.2.2 Example Instantiation

Upon presenting how the two ontologies are connected to form the aggregated ontology of
software projects, in this section we further illustrate this connection using an example. For
our example, we use project Restmarks [2]. The static ontology for project Restmarks has
been provided in deliverable 3.1 of this work package (Figure 7 of Section 2 of D3.1), while
the dynamic ontology is shown in Figure 4.13 of Section 4 of this deliverable7. Upon applying
the mapping of subsection 5.2.1, the aggregated ontology instance is shown in Figure 5.4.

7 Note that the static and the dynamic ontologies rely each on a single type of input, functional requirements
and storyboards respectively. We could also have other modes, e.g. use case diagrams, activity diagrams. In any
case, the static and the dynamic view are sufficiently covered for this software project using these modes.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [48] of [61]

Figure 5.4 Example Instantiation of the Aggregated Ontology for project Restmarks

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [49] of [61]

As shown in Figure 5.4, the aggregated ontology for Restmarks is a representation that could
closely resemble its CIM. Although not covered in this deliverable, RESTful architectures
imply that the main elements of the CIM are resources, actions for creating, reading,
updating, and deleting them, as well as conditions and properties for these actions. Thus, in
the case of Restmarks, we can see that several resources, such as “bookmark” or “tag”, have
been correctly identified. Additionally, the properties of the instances of the ontology are
also correctly identified. Some of the related instances for resource “bookmark” are shown
in Table 5.5.

Table 5.5 Related Instances for the resource “bookmark” of Restmarks

OWL Class OWL Property

Project Restmarks

Requirement FR4, FR5, FR6, FR7, FR8, FR9, FR10, FR11, FR12,
FR13

ActivityDiagram Add_Bookmark_diagram, Delete_Bookmark_diagram,
Show_Bookmark_diagram, Update_Bookmark_diagram,
Search_Bookmark_by_Tag_System_Wide_diagram,
Search_Bookmark_by_Tag_User_Wide_diagram

Property private, public, tag

Activity Add_bookmark, Delete_bookmark, Get_bookmark,
Show_bookmark, Update_bookmark,
retrieve_bookmark, search_bookmarks,
mark_bookmarks

At first, the related instances of “bookmark” clearly illustrate how this resource has been
detected. The relevant functional requirements and diagrams are all marked. Additionally,
the related instances of Activity contain all possible actions of “bookmark”. Since they
are all connected to Action, we can easily deduce which CRUD verb has to be used for
each activity.

5.3 Ontology API

As noted in the introduction of this Section, the aggregated ontology has to communicate to
both the MDE components and the components for finding functionally equivalent web
services. Additionally, it has to be instantiated by the static and dynamic ontologies as
shown in the previous subsection. Consequently, we designed a comprehensive API to
handle all I/O operations on the ontology. In this subsection, we describe this API.

The API is instantiated given the filename of the ontology and the project name to be added
or retrieved. The constructor is shown in Table 5.6. Note also that upon using the API, one
has to call the function close in order to write it back to disk.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [50] of [61]

Table 5.6 Constructor of the API for the Aggregated Ontology

Method: LinkedOntologyAPI

 Return type (constructor)

Parameters String filename, String source, String projectName

Description Initializes the connection of this API with the ontology.

Table 5.7 contains API functions used for adding elements to the ontology. At first, it allows
instantiating the high-level OWL classes, such as Requirement and ActivityDiagram
(Project is already handled in the constructor). After that, any element added in the
ontology (e.g. a Resource) is connected to the respective requirement or diagram and the
project using the function connectRequirementToElement. Note also that several of these
functions add an element and connect it also to other elements. For example, function
addActivityToResource does not only add an Activity to the ontology but also connects it
to the corresponding Resource. This is quite important since it ensures that no
Activity is left without a Resource, thus the API enforces some simple rules for the
ontology.

Table 5.7 Input Functions of the API for the Aggregated Ontology

Method: addActionToActivity

 Return type void

Parameters String activityName, String actionName

Description Adds an action to a specific activity of the ontology.

Method: addActivityDiagram

 Return type void

Parameters String activityDiagramName

Description Adds an activity diagram and connects it to the project.

Method: addActivityToResource

 Return type void

Parameters String resourceName, String activityName

Description Adds an activity to a specific resource of the ontology. The
type of the activity is set to “Other”.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [51] of [61]

Method: addActivityToResource

 Return type void

Parameters String resourceName, String activityName, String activitytype

Description Adds an activity to a specific resource of the ontology.
Overloaded function to include the type of the activity.

Method: addConditionToActivity

 Return type void

Parameters String activityName, String conditionName

Description Adds a condition to a specific activity of the ontology.

Method: addInputRepresentationToResource

 Return type void

Parameters String resourceName, String inputRepresentation

Description Adds an input representation to a specific resource.

Method: addNextActivityToActivity

 Return type void

Parameters String activityName, String nextActivityName

Description Adds a forthcoming activity to a specific activity of the
ontology.

Method: addOutputRepresentationToResource

 Return type void

Parameters String resourceName, String outputRepresentation

Description Adds an output representation to a specific resource.

Method: addPropertyToResource

 Return type void

Parameters String resourceName, String propertyName

Description Adds a property to a specific resource of the ontology.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [52] of [61]

Method: addRequirement

 Return type void

Parameters String requirementName

Description Adds a requirement in the ontology and connects it to the
project.

Method: addResource

 Return type void

Parameters String resourceName

Description Adds a resource to the ontology.

Method: connectActivityDiagramToElement

 Return type void

Parameters String activityDiagramName, String elementName

Description Connects an activity diagram to an element of the ontology.

Method: connectRequirementToElement

 Return type void

Parameters String requirementName, String elementName

Description Connects a requirement to an element of the ontology.

The respective output functions are shown in Table 5.8. Note that the API, and especially the
output part of it, is obviously prone to changes according to the specifications of the S-CASE
components. Thus, one may notice that this API is not exhaustive, i.e. not all possible
functions are covered. However, its main structure is very close to the required functionality
for creating a CIM for a software project.

Since the main element of a CIM is a resource, the API relies on iterating over resources
using the function getResources. After that, given a specific resource, one can easily access
its activities (getActivitiesOfResource), its properties (getPropertiesOfResource), and its
representations (getInputRepresentationOfResource/ getOutputRepresentationOfResource).
Given an activity, we can also proceed in finding its action (getActionOfActivity), its type
(getActivityTypeOfActivity), and any forthcoming activities (getNextActivitiesOfActivity).
Additionally, since activity is also a central element of the ontology, its connection to
resource is bidirectional, thus the corresponding resource can be found using the function
getResourceOfActivity. Finally, note that since these functions return String representations,
object representation is comprehensive, while any implementation details are hidden.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [53] of [61]

Table 5.8 Output Functions of the API for the Aggregated Ontology

Method: getActionOfActivity

 Return type String

Parameters String activityName

Description Returns the action of a specific activity.

Method: getActivitiesOfResource

 Return type ArrayList<String>

Parameters String resourceName

Description Returns the activities of a specific resource.

Method: getActivityTypeOfActivity

 Return type String

Parameters String activityName

Description Returns the activity type of a specific activity.

Method: getInputRepresentationOfResource

 Return type String

Parameters String resourceName

Description Returns the input representation of a specific resource.

Method: getNextActivitiesOfActivity

 Return type ArrayList<String>

Parameters String activityName

Description Returns the forthcoming activities of a specific activity.

Method: getOutputRepresentationOfResource

 Return type String

Parameters String resourceName

Description Returns the output representation of a specific resource.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [54] of [61]

Method: getPropertiesOfResource

 Return type ArrayList<String>

Parameters String resourceName

Description Returns the properties of a specific resource.

Method: getResourceOfActivity

 Return type String

Parameters String activityName

Description Returns the resource of a specific activity.

Method: getResources

 Return type ArrayList<String>

Parameters -

Description Returns the resources of the ontology for the current project.

5.4 Ontology Instantiation using the RESTful API Modeling Language

The aggregated ontology defined in this Section provides a unified view of software projects.
As such, the instantiation of the ontology can be performed using various sources. In
specific, given the ontology API defined in the previous subsection, one can develop tools for
instantiating the ontology using any source he/she desires. In this subsection, we provide an
example of instantiating the ontology using a RESTful API Modeling Language (RAML)
representation.

RAML [18] is a language used to describe RESTful APIs, based on YAML and supporting also
providing schemas in the form of JSON. Since this representation is the current state-of-the-
art in defining RESTful APIs, we decided to provide a parser for loading a project in this form
in the ontology. Note, however, that RAML is a language used to define a fully-determined
API, thus the information included in this representation may be extended beyond the more
high-level structure of the ontology. For example, response codes or schemata are not
supported by the ontology which is expected since they are not defined in the level of
requirements. Therefore, the main scenario handled in this subsection involves a developer
that has devised a draft RAML representation and wishes to use this instead of the data from
the two ontologies, or even use it along with the data of the static and/or the dynamic
ontology. In other words, S-CASE allows also using this representation along with the other
ones used in WP3 (functional requirements, UML diagrams, etc.), in order to account for a
more detailed view of the system.

An example RAML representation for project Restmarks is shown in Figure 5.5.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [55] of [61]

#%RAML 0.8

title: Restmarks API
baseUri: http://www.scasefp7.eu/restmarks/
/account:
 get:
 description: get the list of all accounts
 post:
 description: create a new account
 queryParameters:
 accountId:
 description: the id of the account to be created
 type: integer
 required: true
 /{accountId}:
 get:
 description: get specific account
 responses:
 200:
 body:
 application/json:
 schema: |
 {
 "accountId": { "type": "integer" },
 "accountName": { "type": "string" }
 }
 put:
 description: update specific account
 queryParameters:
 accountName:
 description: the name of the account to be updated
 type: string
 required: true
 responses:
 200:
 body:
 application/json:
 schema: |
 {
 "accountId": { "type": "integer" },
 "accountName": { "type": "string" }
 }
 delete:
 description: Delete an account
 /bookmark:
 get:
 description: get the list of all bookmarks
 post:
 description: create a new bookmark
 queryParameters:
 bookmarkId:
 description: the id of the bookmark to be created
 type: integer
 required: true
 bookmarkName:
 description: the name of the bookmark to be created
 type: string
 required: true
 /{bookmarkId}:
 get:
 description: get specific bookmark
 responses:
 200:
 body:
 application/json:
 schema: |
 {
 "bookmarkId": { "type": "integer" },
 "bookmarkName": { "type": "string" }

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [56] of [61]

 }
 put:
 description: update specific bookmark
 queryParameters:
 bookmarkName:
 description: the name of the bookmark to be updated
 type: string
 required: true
 responses:
 200:
 body:
 application/json:
 schema: |
 {
 "bookmarkId": { "type": "integer" },
 "bookmarkName": { "type": "string" }
 }
 delete:
 description: Delete a bookmark
 /tag:
 get:
 description: get the list of all tags for this bookmark
 post:
 description: create a new tag for this bookmark
 queryParameters:
 tagId:
 description: the id of the tag to be created
 type: integer
 required: true
 tagName:
 description: the name of the tag to be created
 type: string
 required: true
 /{tagId}:
 get:
 description: get specific tag
 responses:
 200:
 body:
 application/json:
 schema: |
 {
 "tagId": { "type": "integer" },
 "tagName": { "type": "string" }
 }
 put:
 description: update specific tag
 queryParameters:
 tagName:
 description: the name of the tag to be updated
 type: string
 required: true
 responses:
 200:
 body:
 application/json:
 schema: |
 {
 "tagId": { "type": "integer" },
 "tagName": { "type": "string" }
 }
 delete:
 description: Delete a tag
/tagsearch:
 get:
 description: search for a bookmark given a specific tag
 queryParameters:
 tagName:
 description: the name of the tag to search for

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [57] of [61]

 type: string
 required: true
 systemWide:
 description: boolean denoting whether the search must be system wide or
user wide
 type: boolean
 required: true
 responses:
 200:
 body:
 application/json:
 schema: |
 {
 "bookmarkIds": { "type": "list" }
 }

Figure 5.5 Example RAML representation of project Restmarks

Resources in RAML are defined using the / symbol in front of each resource object. As
shown in Figure 5.5, the RAML representation of Restmarks involves the resources account,
{accountId}, bookmark, {bookmarkId}, tag, {tagId}, and tagsearch. The hierarchy of these
resources is defined by using the indentation supported by the YAML notation. Thus,
{accountId} is a subresource of account, bookmark is a subresource of {accountId}, etc.
Since {accountId} actually defined the action of accessing a specific account and the same
holds for any resources surrounded by brackets ({bookmarkId}, {tagId}), we can instantiate
the Resource class of the ontology with the resources account, bookmark, tag, and
tagsearch.

Concerning the actions on resources, these are defined in the next level of indentation, i.e.
inside of each resource. So, for example, we can see that resource account has the actions
get and post. Note that actions are defined in implementation-level, thus they are HTTP
verbs. In our case, they are translated in the ontology in the same verbs in the instance
Action, while the instances of the Activity class are also defined using the format
Activity_Resource, e.g. for the Resource bookmark and the Action post, we also
define the Activity post_bookmark. Given, however, that resources may have also
bracketed counterparts referring to an individual resource (e.g. bookmark has {bookmarkId}),
there are cases where a resource may have more than one get verbs. In this case, we
conventionally define the super-resource get as list. E.g., for bookmark, we have an action
list that lists the user’s bookmarks and an action get that retrieves a specific bookmark.

The ontology class Property is instantiated using the queryParameters RAML element. For
example, resource tag has the parameters tagId and tagName, as determined by the
queryParameters of the verbs post and ({tagId}/)put.

Finally, note that several elements of the RAML file are not included in the ontology. For
instance, URIs, schemata, variable types, etc. are not supported by the ontology classes.
However, the mapping described in the previous paragraphs allows instantiating the
ontology using all the main elements of the architecture of a RESTful service, including
resources, actions, and properties. The parser can be extended if required to involve more
information in the form of OWL comments, however the main functionality already supports
our scope for instantiating the ontology.

Given the RAML of project Restmarks, the corresponding ontology instantiation of our RAML
parser is shown in Figure 5.6.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [58] of [61]

Figure 5.6 Example Instantiation of the Aggregated Ontology for the RAML representation of project Restmarks

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [59] of [61]

As shown in Figure 5.6, the ontology indeed includes the main elements of the RAML
representation of Restmarks. It is interesting to note that the activities list_account,
list_bookmark and list_tag are generated by the corresponding get operations of
the RAML. Additionally, note that tagsearch is recognized as another resource, which is
actually quite convenient for designing the service. By contrast, in the ontology instantiation
of Figure 5.4, the corresponding resource is shown as an action search that is performed
on the resource tag. Since when creating the CIM we may have to make this translation,
the ontology that is instantiated from the RAML is actually more convenient in this case.

Finally, the properties of the instances of the ontology are also correctly instantiated. Some
of the related instances for resource “bookmark” are shown in Table 5.5.

Table 5.9 Related Instances for the resource “bookmark” of the RAML representation of Restmarks

OWL Class OWL Property

Project Restmarks

Property bookmarkId, bookmarkName

Activity delete_bookmark, get_bookmark, list_bookmark,
post_bookmark, put_bookmark

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [60] of [61]

6 Conclusions

The work discussed in this deliverable summarizes our progress on Task 3.2 of WP3 of S-
CASE. In the context of the S-CASE architecture, this deliverable provides an initial viewpoint
for the multimodal information processing purpose of WP3. In specific, we introduce an
ontology that stores the dynamic view of software projects and also design an aggregated
ontology that provides a unified view of software projects as collections of artefacts.

Similar to the static ontology designed in Task 3.1, this deliverable describes the design of an
ontology capable of storing dynamic artefacts of projects. The input for this ontology is given
in the form of storyboards and activity diagrams, although it may easily be extended to other
types of dynamic flow representations. The ontology describes effectively the main elements
as well as the flow of data in a system.

As for the diagrams of the dynamic view of the system, we have concluded that activity
diagrams are sometimes verbose and generally do not fit perfectly the RESTful paradigm.
Consequently, we have designed storyboards as a new type of diagram that is more effective
in describing resources, RESTful actions, and dynamic flows of systems. Furthermore, we
have designed and implemented a diagram editor for these types of storyboards as a plugin
of the Eclipse IDE.

Finally, a unified view of the static and dynamic concepts of a software system was defined
using data from the ontologies for the static and dynamic views of the system. The
aggregated ontology functions as a REST-oriented representation while also ensuring that
the traceability with respect to the two ontologies is achieved. The API of the aggregated
ontology can be used for instantiating it using several representations, such as the RAML one
shown in this deliverable. Additionally, the API shall prove useful for creating the first version
of the CIM for a software project.

FP7-ICT-610717 D3.2.2 Module for extracting software artefacts from storyboards

Deliverable Version 1.0 page [61] of [61]

References

[1] Object Management Group: OMG Unified Modeling Language (OMG UML),
Infrastructure. Version 2.5 – Beta 2. OMG Document Number ptc/2013-09-05, 2013,
available online: http://www.omg.org/spec/UML/2.5/Beta2/

[2] Project Restmarks, RESTAPPS, S-CASE Consortium, 2014.

[3] Cucumber: behaviour driven development with elegance and joy, 2014, available
online: http://cukes.info/

[4] List of Unified Modeling Language tools, Wikipedia, 2014, available online:
http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

[5] ArgoUML, 2014, available online: http://argouml.tigris.org/

[6] StarUML 2, A sophisticated software modeller, 2014, available online: http://staruml.io/

[7] Papyrus, Eclipse UML tool, 2014, available online: http://eclipse.org/papyrus/

[8] Modelio open source modeling environment, 2014, available online:
http://www.modelio.org

[9] UML Tools, S-CASE wiki, 2014, available online: http://wiki.scasefp7.com/index.php/
UML_tools

[10] Graphiti - a Graphical Tooling Infrastructure, 2014, available online: http://eclipse.
org/graphiti/

[11] EuGENia, 2014, available online: http://eclipse.org/epsilon/doc/eugenia/

[12] Eclipse Modeling Framework Project, available online: http://www.eclipse.org/mode
ling/emf/

[13] Graphical Editing Framework, available online: http://www.eclipse.org/gef/

[14] Eclipse Graphical Modeling Framework / Tutorial / Part 1, available online:
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial/Part_1

[15] Protégé, Stanford Center for Biomedical Informatics Research (BMIR), Stanford
University School of Medicine, 2014, available online: http://protege.stanford.edu

[16] Storyboard Creator Technical Manual, S-CASE Consortium, 2014

[17] Storyboard Creator User Manual, S-CASE Consortium, 2014

[18] RAML - RESTful API Modeling Language, available online: http://raml.org/

	1 Introduction
	1.1 WP3 Objectives
	1.2 Scope of Task 3.2
	1.3 Structure of this Deliverable

	2 State-of-the-art: UML Diagrams and Graphical Editors
	2.1 UML Diagrams for the Dynamic View of Software Projects
	2.1.1 Structure and Behaviour Diagrams
	2.1.2 Activity Diagrams
	2.1.3 Other Dynamic Representations
	2.1.4 Dynamic Representations in the RESTful Domain

	2.2 Graphical Editors
	2.2.1 Creating Graphical Editors
	2.2.2 Eclipse Graphical Modeling Project
	2.2.2.1 Overview
	2.2.2.2 Workflow of Creating Diagram Editors

	2.3 Task Contributions and Progress beyond the State-of-the-art

	3 Ontology for the Dynamic View of Software Projects
	3.1 Ontology Overview
	3.1.1 Ontology Class Hierarchy
	3.1.2 Ontology Properties
	3.1.2.1 High-Level Ontology Properties
	3.1.2.2 Low-Level Ontology Properties

	3.2 Example Instances

	4 Storyboard Creator
	4.1 Requirements of the Storyboard Creator
	4.2 Design of the Storyboard Creator
	4.2.1 Architecture
	4.2.2 Models
	4.2.2.1 Domain Model
	4.2.2.2 Tooling Model
	4.2.2.3 Graphical Model

	4.2.3 Combining the Models and Generating the Tool
	4.2.4 Refining the Storyboard Creator
	4.2.5 Storyboard Creator File Model

	4.3 Usage of the Storyboard Creator
	4.3.1 Features
	4.3.2 Usage and Validation
	4.3.3 Ontology Instantiation
	4.3.3.1 Example Instantiation for a storyboard
	4.3.3.2 Example Instantiation for a software project

	5 Aggregated Ontology of Software Projects
	5.1 Ontology Overview
	5.1.1 Ontology Class Hierarchy
	5.1.2 Ontology Properties
	5.1.2.1 High-Level Ontology Properties
	5.1.2.2 Low-Level Ontology Properties

	5.2 Ontology Linking
	5.2.1 Linking the Static and Dynamic Ontologies
	5.2.2 Example Instantiation

	5.3 Ontology API
	5.4 Ontology Instantiation using the RESTful API Modeling Language

	6 Conclusions
	References

