

Deliverable Version 1.0 page [1] of [36]

Seventh Framework Programme

CallFP7-ICT-2013-10

Project Acronym: S-CASE

Grant Agreement No: 610717

Project Type: COLLABORATIVE PROJECT

Project Full Title: Scaffolding Scalable Software Services

D3.1.2 Module for extracting
software artefacts from text

Nature: R

Dissemination Level: PU

Version #: 1.0

Date: 30 July 2014

WP number and Title: WP3 Multimodal Information Processing

Deliverable Leader: UEDIN

Author(s): Michael Roth (UEDIN), Ewan Klein (UEDIN),
Themistoklis Diamantopoulos (AUTH)

Revision: Davide Tossi (INS), Luigi Lavazza (INS),
Andreas Symeonidis (AUTH)

Status: Submitted (Draft, Peer-Reviewed, Submitted, Approved)

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [2] of [36]

Document History

Version1 Issue Date Status2 Content and changes

0.1 20 May 2014 Draft TOC

0.2 29 May 2014 Draft Revised TOC

0.3 7 July 2014 Draft First draft sections 1, 3

0.4 8 July 2014 Draft First draft sections 2, 4

0.5 9 July 2014 Draft Completed first draft

0.7 21 July 2014 Draft Revised draft sections 1, 3 based on review

0.8 22 July 2014 Draft Revised draft sections 2, 4 (except 4.1) based on review

0.9 22 July 2014 Draft Completed revised draft

1.0 30 July 2014 Final Incorporated all reviewers’ comments and submitted
deliverable

Peer Review History3

Version Peer Review Date Reviewed By

0.6 14 July 2014 Davide Tosi (INS), Luigi Lavazza (INS)

1.0 30 July 2014 Andreas Symeonidis (AUTH)

This project has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under grant
agreement no 610717.

1
 Please use a new number for each new version of the deliverable. Use “0.#” for Draft and Peer-Reviewed. “x.#” for

Submitted and Approved”, where x>=1.Add the date when this version was issued and list the items that have been added
or changed.
2
 A deliverable can be in one of these stages: Draft, Peer-Reviewed, Submitted and Approved.

3Only for deliverables that have to be peer-reviewed

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [3] of [36]

Table of contents

DOCUMENT HISTORY .. 2

TABLE OF CONTENTS ... 3

ABBREVIATIONS AND ACRONYMS ... 5

EXECUTIVE SUMMARY .. 6

1 INTRODUCTION ... 7

1.1 WP3 OBJECTIVES .. 7

1.2 SCOPE OF TASK 3.1 ... 7

1.3 STRUCTURE OF THIS DELIVERABLE ... 7

2 ONTOLOGY FOR SOFTWARE REQUIREMENTS ... 8

2.1 BACKGROUND ON ONTOLOGY LANGUAGES AND NOTATION ... 8

2.2 ONTOLOGY OVERVIEW ... 9

2.2.1 ONTOLOGY CLASS HIERARCHY .. 9

2.2.2 ONTOLOGY PROPERTIES .. 12

2.3 EXAMPLE INSTANCES .. 16

2.3.1 INDIVIDUAL INSTANCES ... 16

2.3.2 EXAMPLE PROJECT ... 17

3 MODULE FOR EXTRACTING SOFTWARE ARTEFACTS ... 20

3.1 SYNTACTIC ANALYSIS .. 21

3.2 SEMANTIC ANALYSIS .. 21

3.2.1 IDENTIFYING INSTANCES OF OPERATIONTYPE... 22

3.2.2 CLASSIFYING INSTANCES OF OPERATIONTYPE .. 22

3.2.3 IDENTIFYING INSTANCES OF THINGTYPE .. 22

3.2.4 CLASSIFYING INSTANCES OF THINGTYPE ... 22

3.3 FEATURES .. 23

3.3.1 BINARY FEATURES.. 23

3.3.2 CONTINUOUS FEATURES ... 25

3.4 LEARNING .. 25

4 COLLECTION AND ANNOTATION OF SOFTWARE REQUIREMENTS 27

4.1 DATA COLLECTION ... 27

4.2 ANNOTATION SCHEME.. 27

4.3 ANNOTATION TOOL ... 28

4.3.1 USAGE OF THE ANNOTATION TOOL ... 29

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [4] of [36]

4.3.2 EXAMPLE ANNOTATED PROJECT USING THE ANNOTATION TOOL ... 30

5 CONCLUSIONS ... 34

REFERENCES ... 35

A. NLP PARSING PROTOTYPE ... 36

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [5] of [36]

Abbreviations and Acronyms

FR Functional Requirement

OWL Web Ontology Language

SVO Subject-Verb-Object

TTL

SRL

Terse RDF Triple Language

Semantic Role Labelling

RDF Resource Description Framework

URI Uniform Resource Identifier

XML eXtensible Markup Language

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [6] of [36]

Executive Summary

The module for extracting software artefacts from text converts informal requirements
expressed in natural language into a formal language that maps to the S-CASE ontology. This
is achieved by using natural language processing techniques to automatically parse and
“understand” the unstructured textual input.

The semantic parser is developed on the basis of supervised optimization methods from
machine learning and hence relies on annotated data as training material. The concept
ontology is integrated as background knowledge and provides guidance for automatically
detecting and classifying instances of concepts and relations in previously unseen text.

In the context of the S-CASE architecture, this module provides initial analyses of software
requirements, which will be used in conjunction with information from UML diagrams and
storyboards to populate the S-CASE registry, and will serve as the basis for a query
mechanism that goes beyond keyword search.

This deliverable describes the various components of the module developed for the task
outlined above, including (1) a concept ontology that defines a hierarchy of concepts and
relations for representing software requirements, (2) a semantic parser that automatically
maps text fragments to instances of concepts and relations defined in the ontology, (3)
annotation guidelines and a web-based annotation tool and (4) a data set of annotated
requirements used for training the parser.

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [7] of [36]

1 Introduction

Deliverable 3.1 (Module for extracting software artefacts from text) describes the software
components implemented for semi-automatically converting unstructured requirements
written in natural language to a formal representation that maps to the S-CASE ontology.
This deliverable is part of work package 3 (WP3), which aims to extract requirements from
multi-modal input.

1.1 WP3 Objectives

The main goal of WP3 is to design the mechanisms for efficiently extracting requirements
from formal models such as UML diagrams, as well as from text and images. Additionally,
WP3 will design and implement the Question-Answering mechanism that will serve as the
user interface for querying on software artefacts. The WP has four specific objectives:

 To recognize software requirements informally expressed in unstructured and semi-
structured English text and provide them with formal semantics (T3.1).

 To analyse storyboards of intended user interactions with software (T3.2).

 To transform XMI-based UML diagrams into the S-CASE ontology and to semantically
analyse images of UML diagrams (T3.3).

 To develop a question answering system that will allow developers to pose queries in
natural language about the software components in the S-CASE repository (T3.4).

This deliverable focuses on the first objective. We describe the scope of the corresponding
task in more detail in the following sub-section.

1.2 Scope of Task 3.1

This deliverable reports on work performed for Task 3.1, which comprises of the following
sub-tasks: analysis of existing corpora of natural language software requirements,
construction of a parser prototype that converts informal requirements into a formal
language, and creation of a semantically annotated evaluation data set. Work on these tasks
has resulted in the following contributions described in this deliverable: (1) a concept
ontology that defines concepts and relations that describe static functionalities of a software
system, (2) a semantic parser that extracts instances of such concepts and relations from
text, and (3) an annotation tool that can be utilized by S-CASE users to annotate and revise
semantic information expressed in and extracted from natural language text.

1.3 Structure of this Deliverable

The document is structured as follows. Section 2 describes the concept ontology developed
for formally representing semantic information expressed in textual descriptions of software
requirements. Section 3 provides information on the semantic parser that we developed for
performing the extraction task automatically. Section 4 describes an initial data set of
software requirements and an annotation tool developed to manually annotate and revise
mappings between text fragments and semantic information. We conclude this document in
Section 5 with a summary of our results to date.

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [8] of [36]

2 Ontology for Software Requirements

This Section concerns the design of an ontology for storing information derived from
functional requirements. This ontology shall provide a representation of the static view of
the system, including functional requirements, use case diagrams and generally any static
information derived from other types of input (e.g. analysis class diagrams). The first
subsection provides some essential background knowledge on ontology languages, and the
following ones present the ontology and illustrate its instantiation using examples.

2.1 Background on Ontology Languages and Notation

Ontologies provide a structured means of storing information. They are known to be
particularly useful for storing linked data (i.e. data connected with relations) and they
provide effective ways of retrieving stored data via queries. Although ontologies are traced
as early as in the 1990s, their widespread usage was connected to the emergence of the
World Wide Web.

Information in the World Wide Web can be represented in a variety of languages; a general-
purpose language for representing such information is provided by the Resource Description
Framework (RDF). Mostly oriented towards representing metadata, the basic RDF data
model has three main object types: resources, properties, and statements. A resource is any
“thing” that is described by the language, while properties are relations among resources.
Resources are unique, identified by a Uniform Resource Identifier (URI), while their values
can be either simple string values or other resources. Finally, the resources and the
properties are assigned values using statements.

Although the RDF data model provides a powerful conceptual framework, it defines no
syntax for the language itself. Thus, RDF models are usually used along with the well-known
eXtensible Markup Language (XML). Additionally, both the RDF model and the XML require
their respective schemas. The RDF schema defines the required hierarchies for the resources
and the properties of the data model, e.g. a resource of type dog would be a subresource of
resource animal. The XML schema is simply a way to restrict the structure of XML
documents.

Although the combination of RDF and XML are powerful enough for storing and presenting
information, processing the stored information is hard. To overcome this difficulty, the Web
Ontology Language (OWL) has been designed in order to enhance the aforementioned
model by incorporating semantic information and providing additional formal vocabulary. In
accordance with RDF, OWL has classes, properties, and statements, while also including
more advanced features such as cardinality or symmetry between properties.

In the context of S-CASE, we decided to use OWL since it is a well-known established
standard of current research and industry communities. In addition, we use Protégé for
visualizing and designing our ontology (Protégé, 2014) since it is also a well-known tool. For
an extensive review of OWL languages and tools, the reader is referred to the deliverable 4.1
of WP4.

The visualizations used throughout this deliverable include OWL classes, properties, and
individuals. Classes and individuals are drawn as rounded squares (with different colors), and
properties are drawn as arrows. The shapes and arrows have labels that hold the name of

FP7-ICT-610717 D3.1.2 Module for extracting software artefacts from text

Deliverable Version 1.0 page [9] of [36]

each class or property. Note, however, that the has_subclass property, which defines
the hierarchical nature of OWL classes is given unlabelled in order to avoid cluttering the
visualizations. Instead, the arrow of has_subclass is continuous so that it is clearly
distinguishable with respect to the other property arrows that are dashed.

2.2 Ontology Overview

Since the ontology must cover the static functional aspects of the system, its design was
mainly focused on the simple concept of an acting unit of the system (e.g. actor or system)
performing some action(s) on some object(s). This representation not only covers the main
functionality of the system but it is also suitable for representing functional requirements. In
specific, well-formed subject-verb-object (SVO) sentences are easy to model. In addition,
although the main focus of this deliverable is functional requirements, use cases can also be
modeled effectively, since they also consist of an actor-acts-on-object structure.

2.2.1 Ontology Class Hierarchy

The class hierarchy of the ontology is shown in Figure 1. As shown in that Figure, anything
entered in the ontology (any owl:Thing) is actually a Concept. Instances of class
Concept are further divided in the types of Project, Requirement, ThingType, and
OperationType.

Project refers to the project analyzed while Requirement stores each functional
requirement of the system. These two types are useful for instantiating the ontology while
keeping the structure reversible. Since each project has several requirements and each
requirement has several other concepts (see next subsection for relations), one can
reconstruct the main structure of each project including each one of the requirements with
the respective concepts.

ThingType and OperationType are the main types of objects found in any functional
requirement. The former refers to acting units and units acted upon, while the latter
involves all types of actions performed by the acting units on other objects. In specific, a
ThingType instance can be one of the following classes:

 actor: refers to the actors of the project. It includes three types of subclasses:
o useractor: the users of the system
o external_system: any external systems interacting with the systemc

o system: the system itself is also an actor

 object: involves any object or resource of the system that receives some action.
Since the nature of some objects can be composite (or generally have some notion of
transitiveness), the concept of receiving an object from a composite object or
sending some object to a composite object has to be modeled. Thus, three subclasses
of object are defined:

o theme: the main subclass of object, involving any generic object or
resource of the system

o source: involves objects that are sources of other objects. For example, for
the phrase “get tag from bookmark”, “tag” would be mapped as theme and

bookmark as source.

Deliverable Version 1.0 page [10] of [36]

Figure 1 Ontology Class Hierarchy

Deliverable Version 1.0 page [11] of [36]

o goal: has the opposite meaning of source. It involves mapping objects that
are destinations of other objects (e.g. via composition). For example, for the
phrase “assign tag to bookmark”, “tag” would be mapped as theme and
bookmark as goal.

 property: includes all modifiers of objects or actions that assign some property to
an object or to the action involved. Since instances of this class are highly generic
(modifiers could concern many different properties of an object), several subclasses
are defined to disambiguate among the modifier types with different semantics. The
main intuition behind these properties came from the PropBank project (Palmer et
al., 2005). The subclasses are shown below:

o direction: includes modifiers that specify a notion along some path. For
example, in the requirement “The user must be able to navigate North”,
“North” is mapped as a direction.

o time: includes modifiers that show when actions take place. In most cases,
temporal modifiers provide conditional constructs and/or successive views of
requirements. For example, in the requirement “The system must be able to
return to the menu when a movie is playing”, the phrase “when a movie is
playing” is a property of type time.

o location: includes modifiers that indicate where some action takes place.
For example, in the requirement “On the main page, the user must be able to
exit”, the phrase “on the main page” is a location.

o extent: includes modifiers that indicate an amount of change. Changes may
be expressed in terms of numbers, quantifiers or comparatives. For example,
in the requirement “The system must automatically exit if no action is
performed for 30 minutes”, the phrase “for 30 minutes” is a property of

type extent. Although extent is probably more typical for non-functional
requirements, functional requirements may also contain such properties.

o modality: includes constructs containing auxiliary verbs. Indicative
examples include e.g. “a bookmark that can be deleted”, or “a query that will
not be stored”.

o manner: includes constructs (mainly adverbs) that specify how an action is
performed. For example, in the requirement “The user must be able to search

a POI by name”, the “by name” is of type manner.

Finally, the class OperationType includes all operations performed by a user, either
transitive or not. Thus, the subclasses of OperationType are:

 ownership: involves operations that express possession. In functional
requirements, these operations are commonly expressed using the verb “have”. For
example, one such operation can be extracted from the requirement “Each user must
have his own private list of bookmarks”.

 emergence: represents operations that undergo passive transformation. In specific,

the state of an object changes without some actor forcing it to. For example, the

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [12] of [36]

phrase “the bookmark is re-indexed” indicates that the bookmark undergoes an

emergence operation (“re-indexed”).

 action: describes an operation performed by an actor on some object. It is the
most common operation, including almost all operations that are performed on
objects (apart only from ownership). For example, in the requirement “The user must
be able to create a bookmark”, the term “create” is an action.

 state: indicates an operation that describes the status of an actor. For example, in

the phrase “the user is logged in”, the state of the actor “user” is “logged in”.

The aforementioned owl classes cover effectively the static view of the system, while also
storing all information that shall prove useful for the upcoming deliverables of S-CASE.

2.2.2 Ontology Properties

The relations of the ontology are very important since they define the possible interactions
between the different classes. In the context of the ontology defined in this Section, we
defined a set of properties in order to sufficiently cover all possible interactions.

2.2.2.1 High-Level Ontology Properties

At first, concerning requirements-level, we define the properties shown in Table 1. As shown
in that Table, several properties are bidirectional.

Table 1 High-level properties of the static ontology

OWL Class Property OWL Class

Project project_has_requirement Requirement

Requirement is_of_project Project

Requirement has_compound_requirement Requirement

Requirement is_compound_requirement_of Requirement

Requirement requirement_consists_of ThingType,

OperationType

ThingType,

OperationType

consist_requirement Requirement

The high-level properties shown in Table 1 cover the interactions among the four main
classes of the ontology (Project, Requirement, ThingType, OperationType). In
specific, each project can have many different requirements while each requirement can
also be compound, i.e. containing other requirements. In addition, each requirement
consists of several ThingType and OperationType instances. Furthermore, since OWL
allows defining subproperties, we can further refine the requirement_consists_of
and consist_requirement properties as shown in Table 2 and Table 3 respectively.

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [13] of [36]

Table 2 Subproperties of the requirement_consists_of property

OWL Class Property OWL Class

Requirement requirement_has_concept ThingType

ThingType is_concept_of_requirement Requirement

Table 3 Subproperties of the consist_requirement property

OWL Class Property OWL Class

Requirement requirement_has_operation OperationType

OperationType is_operation_of_requirement Requirement

The defined properties are visualized in Figure 2, including only one of the two directions for
bidirectional properties for simplicity.

Figure 2 High-level Ontology Properties

2.2.2.2 Low-Level Ontology Properties

With the term “low-level properties” we define the properties that cover the interactions
among the different subclasses of ThingType and OperationType. These properties
are given in Table 4.

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [14] of [36]

Table 4 Low-level properties of the ontology

OWL Class Property OWL Class

action acts_on object, property

object, property receives_action action

OperationType has_actor actor

actor is_actor_of OperationType

object has_goal goal

goal is_goal_of object

object has_source source

source is_source_of object

ThingType has_property property

property is_property_of ThingType

emergence occurs object

object occured_by emergence

ownership owns object

object owned_by ownership

As shown in Table 4, several properties are bidirectional. We are able to identify a structure
for these properties that is indeed quite similar to the way sentences are structured. In
specific, instances of type actor are actors of operations, i.e. they are connected with

OperationType instances via the properties is_actor_of and has_actor. After
that, operations can either connect to objects or not, according to whether they are
transitive. Thus, any action acts on instances of type object or property, while
emergence occurs on an object and ownership is connected with objects via the
owns and owned_by properties. The non-transitive state operation connects only with an

actor instance (via the properties is_actor_of and has_actor).

Finally, the composite (or also source-target) nature of the objects is also clearly depicted
using properties. Thus, any object can have a source and/or a goal. It connects with
the former via the has_source and is_source_of properties, and with the latter via

the has_goal and is_goal_of properties.

The structure of the subclasses of ThingType and OperationType along with the
properties among them is shown in Figure 3.

Deliverable Version 1.0 page [15] of [36]

Figure 3 Low-level Ontology Properties

Deliverable Version 1.0 page [16] of [36]

2.3 Example Instances

This Section illustrates the use of the ontology for storing functional requirements. In the
following subsections, we present examples of ontology instantiations, including both
individual requirements and a whole project.

2.3.1 Individual Instances

An example annotated instance for a functional requirement is shown in Figure 4.

Figure 4 Example annotated instance for a SVO sentence

Though simple, the above example is illustrative of how SVO sentences can be stored in the
ontology. Similarly, the ontology can store more complex sentences, including e.g.
properties such as the one in Figure 5.

Figure 5 Example annotated instance for a SVO sentence with more modifiers

In the above examples, only low-level owl classes and properties are shown. In the case of a
software project, each requirement shall also instantiate the Requirement class and its
various properties (see Table 2 and Table 3).

The user must be able to create an account.

actor

actor

action

action

theme

is_actor_of

is_actor_of

has_actor

has_actor

acts_on

acts_on

receives_action

receives_action

theme

modality

has_property

is_property_of

Each user should be able to declare any expense as illegitimate.

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [17] of [36]

Finally, note that this and the next subsection mainly concern the instantiations of the
ontology; thus we illustrate how the ontology can handle the instances without referring to
how these annotations can be created. The creation of these instances is demonstrated in
the next Section with the use of an NLP parser, while manual annotation for training the
parser is the topic of Section 4.

2.3.2 Example Project

For illustration purposes, we use the functional requirements of project Restmarks (Project
Restmarks, 2014). Restmarks is a social network where each user can share his internet
bookmarks. Additionaly, the user can add informative tag to his/her bookmarks, create,
modify, or delete existing bookmarks and search for his/her private bookmarks and/or public
bookmarks of other users. The functional requirements of Restmarks are given in Figure 6.

Figure 6 Functional requirements of project Restmarks

Given the requirements of the project, one can construct the ontology instance shown in
Figure 7. As shown in that Figure, classes theme, action, and property (modality

and manner) are among the most used ones. Requirements typically also have an actor,
which however is the same for several requirements (e.g. “user”).

One can make several observations based on the instantiation of the ontology shown in
Figure 7 with respect to the requirements of Figure 6. Note for example the “user” instances.
There is a useractor instance “user” and a modality instance “user_1”. Both instances
however are correctly stored, since the useractor instance refers to the actor of the
requirements (which is in this case the same in all 13 requirements), whereas instance
“user_1” refers to the word “user” which is found in the 1st requirement of the project as an
adjective of the noun “account” (see Figure 6).

 FR1. A user must be able to create a user account by providing a username and a
password.

 FR2. A user must be able to login to his/her account by providing his/her username and
password.

 FR3. A user that is logged in to his/her account must be able to update his password.

 FR4. A logged in user must be able to add a new bookmark to his/her account.

 FR5. A logged in user must be able to retrieve any bookmark from his/her account.

 FR6. A logged in user must be able to delete any bookmark from his/her account.

 FR7. A logged in user must be able to update any bookmark from his/her account.

 FR8. A logged in user must be able to mark his/her bookmarks as public or private.

 FR9. A logged in user must be able to add tags to his/her bookmarks.

FR10. Any user must be able to retrieve the public bookmarks of any RESTMARKS’s
community user.

FR11. Any user must be able to search by tag the public bookmarks of a specific
RESTMARKS’s user.

FR12. Any user must be able to search by tag the public bookmarks of all RESTMARKS
users.

FR13. A logged in user, must be able to search by tag his/her private bookmarks as well.

Deliverable Version 1.0 page [18] of [36]

Figure 7 Example ontology instance for project Restmarks

Deliverable Version 1.0 page [19] of [36]

Note also that several terms may be instances of object and property at the same time.
This is also expected since they can be modeled either as objects that can be deleted,
updated, etc. or as properties (similar to sub-objects) of other objects. For example, the
term “password” appears in three requirements of the project. In the 3rd requirement it is an
object, while in the 1st and the 2nd requirements it is better modeled as a property of
“account”.

Finally, in Table 5, the low-level properties of requirement FR4 of Restmarks are presented.
The properties once again imply a SVO structure (user–add–bookmark), while the goal
instance is also used in order to model the fact that an account is the goal of bookmarks
(i.e. the user account contains his/her bookmarks)

Table 5 Low-level properties for the ontology instances of the FR4 of Restmarks

OWL Individual Property OWL Individual

user is_actor_of add

add has_actor user

add acts_on bookmark

bookmark receives_action add

bookmark has_goal account

account is_goal_of bookmark

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [20] of [36]

3 Module for Extracting Software Artefacts

The module for extracting software artefacts from text is based on the concept ontology
described in Section 2. That is, the module processes text and automatically detects
fragments that instantiate concepts and relations defined in the ontology and maps them to
a corresponding meaning representation. In practice, this parsing task involves several steps:
first, instances of concepts need to be identified and then mapped to the correct class and,
second, relations between instances of concepts need to be identified and labelled
accordingly.

While there is little previous work on analysing software requirements using semantic
parsing techniques, various methods have been proposed for related tasks in natural
language processing. Early work relied on custom-built syntactic parsers and simple rules for
mapping grammatical relations to logical symbols (Nanduri and Rugaber, 1995). However,
building special-purpose grammars for specific domains is labour-intensive and scales. From
both an engineering and a linguistic perspective, it is more appealing to start from an
existing broad-coverage grammar and modify it to address the relevant domain. One such
approach would be to couple semantic and syntactic analysis through a transparent
interface as proposed, for example, in the combinatory categorial grammar formalism
(Steedman, 2000). An alternative, more conventional approach, is to perform syntactic
analysis first and then apply semantic role labelling (SRL) techniques that assign thematic
relations (i.e., who did what to whom) to words-spans based on syntactic structure (Gildea
and Jurafsky, 2002).

For this module, we implemented a parsing pipeline based on previous work in semantic role
labelling (cf. Figure 8). This choice was motivated by an initial analysis of a small set of
software requirements in which we tested several previous methods and found semantic
role labelling techniques to generally provide the best off-the-shelf results. Other
approaches turned out to generalize less well or did not provide robust output, leading to
higher error rates and coverage gaps. In our implementation, we adapt semantic role
labelling techniques from purely linguistically motivated relations to directly utilize the
concepts and relations defined in the S-CASE ontology.

The following sub-sections describe our implementation in more detail. In Section 3.1, we
introduce the preprocessing pipeline that we apply to compute a syntactic analysis for each
requirement expressed as a sentence in English. Section 3.2 describes the semantic analysis
modules that we implemented to map words and constituents in a sentence to instances of
concepts and relations from the ontology. The mapping is based on statistical models that
are trained on annotated data (cf. Section 4). We define the features and learning
techniques applied to train each statistical model in Section 3.3 and 3.4, respectively.
Throughout this section, we provide an example analysis for the following sentences:

(a) “The user must be able to create an account.”
(b) “Any user must be able to search by tag the public bookmarks of all RESTMARKS users.”

A prototype implementation of the module for extracting software artefacts from text is
provided in Appendix A.

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [21] of [36]

Figure 8: Illustration of our processing pipeline.

3.1 Syntactic Analysis

The syntactic analysis stage of our pipeline architecture performs the following syntactic
analyses: tokenization, part-of-speech tagging, lemmatization and dependency parsing.
Given an input sentence, this means that the pipeline separates the sentence into word
tokens, identifies the grammatical category of each word (e.g., `user’ noun, `create’
verb) and determines their uninflected base forms (e.g., `users’ `user’). Finally, the
pipeline identifies the grammatical relations that hold between two words (e.g.,
<`user’,`must’> subject-of, <`create’,`account’> object-of).

For all syntactic analysis steps, we rely on components of a readily available system called
mate-tools (Björkelund et al., 2010; Bohnet, 2010). This choice is based on three criteria: (1)
the system achieves state-of-the-art performance on a benchmark data set for syntactic
analysis (Hajič et al., 2009), (2) the output of the syntactic analysis steps has successfully
been used as input for related semantic parsing problems, and (3) the system is fast and
robust, meaning that it can be integrated efficiently into the S-CASE platform.

3.2 Semantic Analysis

The semantic analysis components that we implemented for extracting software artefacts
from text consists of four main components, which we describe in more detail in the
following sub-sections. The sub-tasks accomplished by the components are (1) identifying
instances of OperationType; (2) allocating these to the correct sub-class; (3) identifying
instances of ThingType and (4) determining their relationships to instances of
OperationType.

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [22] of [36]

3.2.1 Identifying instances of OperationType

The component for identifying instances of OperationType detects words in a text that
express actions, ownerships, emergence processes and states of systems or entities (e.g.,
`create’, `search’). The component considers each verb and each noun in a sentence as a
potential instance of the OperationType concept and performs binary classification based
on lexical semantic and syntactic properties of each candidate.

3.2.2 Classifying instances of OperationType

The component for classifying instances of OperationType determines which subtype is
applicable to each instance determined by the identification component. That is, for each
verb and noun in a sentence classified as a potential instance of OperationType, this
component determines whether the specific case expresses an instance of action,
ownership, emergence or status (e.g., `create’ action, `search’ action). As in
the previous component, lexical semantic and syntactic properties are exploited to perform
classification.

3.2.3 Identifying instances of ThingType

The component for identifying instances of ThingType detects words and phrases in a text
that refer to instances of properties and participants, as defined in the ontology (cf. Section
2). The main goal of this component is to recognize instances that are related in a
meaningful way to instances of OperationType or to other instances of ThingType.
Accordingly, the component takes as input pairs of potential instances and performs binary
decisions that indicate whether they are related or not. Only candidate instances of
ThingType that are found to be related to another (potential) instance are identified as
such. In example (a), both `the user’ and `an account’ are instances of ThingType that are
recognized as related to the action expressed by the word `create’. In example (b),
instances related to `search’ are: `any user’, `by tag’ and `the public bookmarks of all
RESTMARKS users’, with `of all RESTMARKS users’ being itself a property related to the
instance of ThingType expressed by the phrase `the public bookmarks’.

3.2.4 Classifying instances of ThingType

The component for classifying instances of ThingType determines suitable subtypes for
each instance of ThingType determined by the corresponding identification module.
Naturally, entities can be involved as properties and participants in different relations and
hence multiple subtypes can apply to a single identified instance. To represent different
aspects of an instance with respect to each relation separately, the component performs
classification on pairs of related instances, similar to the (binary) classification in the
previous component (e.g., <`the user’, `create’> <actor, action>). In this classification
step, lexical semantic and syntactic properties are complemented by additional
characteristics that hold between the linguistic expressions that refer to the considered
instances (e.g. their order in text).

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [23] of [36]

3.3 Features

As indicated in the description of each component, the module for extracting software
artefacts makes use of a wide range of linguistic properties to identify and classify instances
of OperationType and ThingType. In practice, each decision is performed by a statistical
model that uses linguistic properties as features, for which appropriate features weights are
determined based on annotated training data. We next provide a full list of features that are
used in the statistical models. Details on the learning process can be found in Section 3.4.

3.3.1 Binary Features

The features defined in this sub-section are binary indicator features that take values of 1
(applicable) and 0 (not applicable). Each item listed in this sub-section refers to a set of
binary features, each of which is automatically generated from the data using a simple
feature template. For example, the template “word form” refers to a set of features with
each representing one particular word form. When processing new input, a feature value is
set to 1 if and only if the indicated property holds true for the word to be classified.

OperationType features. We use the following sets of features on nouns and verbs to
identify whether they express an instance of an OperationType and, if so, to classify which
sub-type is expressed. To avoid ambiguity, we refer to the specific word to be classified as
the predicate.

 Part-of-speech assigned to the predicate (e.g., noun, verb)

 Dependency relation from the predicate to its head word in the syntactic tree, if any
(e.g., subject, object)

 Word form of the head word, if any

 Part-of-speech assigned to the head word, if any

 Set of dependency relations to children of the predicate, if any (e.g., {subject,object})

 Each single dependency relation to any child of the predicate (e.g., subject, object)

 Word form of each single child of the predicate

 Part-of-speech assigned to each single child of the predicate

ThingType features. We define a similar set of features to identify instances of ThingType
and to determine their relation to other instances of concepts in the ontology. We refer to
candidate instances as arguments and call previously recognized instances predicates,
reflecting the fact that instances of ThingType are typically in a directed relation to a
previously recognized concept instance. Note though that predicates can themselves be
arguments of other predicates, hence features are always computed for a specific pair. In
case a potential argument is expressed by a phrase of more than one word, we represent
the corresponding word span by the head word of the phrase according to the syntactic tree
of the sentence (e.g., `the user’ `user’). The complete dependency trees computed by the
preprocessing pipeline for examples (a) and (b) are shown in Figure 9 and in Figure 10,
respectively.

Figure 9: Dependency tree computed by the preprocessing pipeline for example (a).

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [24] of [36]

Figure 10: Dependency tree computed by the preprocessing pipeline for example (b).

The following feature templates are applied on the preprocessed sentence to derive
indicator features:

 Word form of the predicate (e.g., `create’, `search’)

 Part-of-speech assigned to the predicate (e.g., verb)

 Lemmatized word form of the predicate (e.g., create, search)

 Concept type assigned to the predicate (e.g., action)

 Word form of the head of the predicate (e.g., `to’)

 Part-of-speech assigned to the head word of the predicate (e.g., preposition)

 Each single dependency relation to any child of the word
(e.g., object, adverbial complement)

 Word form of each single child of the word (e.g., `account’, `by’, `bookmarks’)

 Part-of-speech assigned to each single child of the word (e.g., noun, preposition)

 Word form of the argument (e.g., `user’, `account’, `bookmarks’)

 Part-of-speech assigned to the argument (e.g., noun)

 Dependency relation of the argument to its head word in the syntactic tree, if any
(e.g., subject, object)

 Dependency path from the argument to the predicate according to the syntactic tree
(e.g., <subject,object>),

 List of part-of-speech tags assigned to all words in the dependency path
(e.g., {noun,verb})

 Relative position of the argument with respect to the predicate (e.g., left, right)

 Word form of the left-most dependent of the argument according to the syntactic
tree (e.g., `the’)

 Part-of-speech assigned to the left-most dependent of the argument
(e.g., determiner)

 Word form of the right-most dependent of the argument (e.g., `of’)

 Part-of-speech assigned to the right-most dependent of the argument
(e.g., preposition)

 Word form of the next right sibling of the argument in the dependency tree
(e.g., `be’)

 Part-of-speech assigned to the next right sibling of the argument (e.g., verb)

 Word form of the next left sibling of the argument according to the syntactic tree
(e.g., `by’)

 Part-of-speech assigned to the next left sibling of the argument (e.g., preposition)

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [25] of [36]

3.3.2 Continuous Features

In addition to the indicator features described in the previous sub-section, we define a small
set of continuous features that are applicable to any word involved in a classification
decision. The motivation for this additional feature set lies in the fact that indicator features
can be too sparse and hence too specific to provide robust generalization for semantic
parsing. To overcome the resulting gap in coverage, we specifically use as additional features
distributional word representations that are based on word-context co-occurrences and can
be computed over large amounts of unlabelled text. Following the Distributional Hypothesis
(Harris, 1954)—popularly known as “a word is characterized by the company it keeps” (Firth,
1957), words that are similar in meaning also have similar distributional representations and
can hence be used in place of one another, for example, if there is no corresponding
indicator feature available.

In our classification components, we apply a set of publicly available word representations.4
We experimented with different settings on an out-of-domain data set and found word
representations to perform best that were learned from unannotated text using a neural
language model (Bengio et al., 2006) and 50-dimensional vector representations. In neural
language models, representations are trained for each word type by optimizing an objective
function, in which each word in a text is predicted given the (representations of the) n
surrounding words. The representations hence reflect syntactic and semantic properties that
can be derived from the typical contexts in which a word appears. As examples, the
following representations are learned for the words `user’, `account’ and `tag’:

 user := [-0.37, -0.20, -0.46, -0.08, 0.53, -0.24, ..., 0.07]

 account := [-0.48, 0.06, 0.03, 0.23, 0.25, 0.06, ...,-0.02]

 tag := [-0.48, 0.00, 0.00, -0.02, 0.31, -0.22, ...,-0.35]

Interpreting these representations as geometrical vectors, each one points into a different
direction in a vector space. The latter two vectors are, however, closer to each other than to
the first one. In our semantic analysis modules, we utilize the directions of vectors for
classification by looking up the representations of predicates and arguments involved in a
classification decision and by applying each component of a vector as an additional feature.

3.4 Learning

As discussed in Section 3.3, the module for extracting software artefacts consists of several
semantic analysis modules that rely on a range of linguistic properties, which can be
extracted from text using various preprocessing techniques. We rely on each property as a
feature for statistical classification and make sure that classification decisions are affected in
a suitable manner by learning appropriate feature weights from annotated data.

For each component of the module discussed in this document, we use the logistic
regression classifier implemented in the LIBLINEAR toolkit (Fan et al., 2008). The underlying

4 http://metaoptimize.com/projects/wordreprs/

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [26] of [36]

statistical computation in this toolkit is performed by iteratively optimizing the feature
weights w given feature values x and a binary classification label y following equation (1):

 min log 1 0.5y Te wx
w w w (1)

The first part of equation (1) is the logistic loss, which is used to minimize the feature
weights w such that the output of the logistic function applied to wx is close to 1 iff y=1. The
second part of equation (1) is a convex regularization constraint that ensures feature
weights stay close to zero, in order to avoid overfitting to the training data (wT indicates the
transpose of vector w). As input for learning, we use an annotated training data set, in which
words in text are directly related to concepts and relations from the ontology (cf. Section 2
for details). We apply our preprocessing components described in Section 3.1 to extract
feature values and derive class labels from annotated concepts and relations. In the
identification modules (cf. Section 3.2.1 and Section 3.2.3), we use the class label 1 to
indicate that a word expresses an instance of an ontology concept (otherwise -1). In the case
of multi-way classification decisions (cf. Section 3.2.2 and Section 3.2.4), a one-vs.-all model
is learned for each concept in the ontology.

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [27] of [36]

4 Collection and Annotation of Software Requirements

Training an NLP parser is a hard task. It requires collecting and annotating appropriate
datasets so that the parser can distinguish the ontology class of the instances. In this Section,
we initially describe our efforts on collecting datasets. After that, we analyze the annotation
scheme followed and refer to an annotation tool designed and implemented specifically in
order to annotate functional requirements.

4.1 Data Collection

Since software requirements can drastically differ in quality, style and granularity, we
created a highly diverse dataset including requirements documents from various domains.

A large part of the collected documents came from a software development course
organized jointly by several European universities (Distributed Software Development,
2013). The student projects of this course focused on several different areas, such as
embedded systems, virtual reality and web applications. In total, we collected 270
requirements from over 100 student projects.

Additionally, since the usage scenario of S-CASE involves prototyping RESTful projects, we
collected the functional requirements of the RESTAPPS (Project Restmarks, 2014; inter alia).
These are probably most typical of the type of requirements expected concerning the
projects that shall be created using S-CASE. Furthermore, any requirements from pilot cases
shall certainly be useful. Except for the GiftCase prototype, however, requirements were not
available at the time of the writing of this deliverable. From RESTAPPS and GiftCase, we
acquired 26 and 29 requirements, respectively. Together with the data from student
projects, our collection at this point amounts to 325 requirements, with an average length of
12 words and a total vocabulary size of 765 word types.

Finally, data collection involved also requirements documents from past projects (S-CASE
wiki, 2014). These were collected from all partners of S-CASE and involve requirements from
other EU-funded projects. Although these requirements may prove useful for diversity, they
are generally not close enough to the scenario of S-CASE since they are too generic.

4.2 Annotation Scheme

Upon creating a dataset consisting of software requirements, the next step is to annotate
these requirements in order to train the parser. The main issue here lies in deciding how
complex these annotations should be. In specific, an annotation scheme that is very close to
the ontology classes described in Section 2 would be ideal for training the parser (since this
is the final desired result). However, such a scheme would be very difficult for annotators
without sufficient background knowledge.

As a result, we propose a multi-step annotation scheme in which decisions in one iteration
are further refined in later iterations. By adopting the class hierarchy introduced in Section 2,
we can naturally divide each annotation iteration according to a level in the ontology. This
means that in the first iteration, we ask annotators to simply mark all instances of actor,
object, OperationType, and property that are explicitly expressed in a given
requirement. After that, further refinements can be made (by more experienced annotators)

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [28] of [36]

in order to select more specific subclasses for each instance. Thus, we add one layer of
sophistication from the class hierarchy in each iteration, resulting in step-wise refinements.
In the final iteration, we can also add implicit but inferable cases of relations between
instances of concepts (e.g. in the phrase “a user can delete his/her account” involves not
only an action performed on “account” but also ownership of the “account” by the “user”).

Consider the example of Figure 11:

Figure 11 Example annotated instance using the hierarchical annotation scheme

In this sentence, the first iteration would include annotating the “user” and the “account” as
instances of ThingType and the “login” as an OperationType and the “account” as an

object. The second iteration would include annotating the “user” as an actor, the

“login” as an action and the “account” as an object. After that, the next iteration would
involve specifying the “user” as a useractor, and the “account” as a theme. Finally, in
this example we could also add one more iteration where we would specify “account” as an
object owned_by “user”. This relation is not explicitly given in this sentence, however it is
correct.

4.3 Annotation Tool

As noted in the previous subsections, annotating is usually too hard of a task for
inexperienced users. In our case, training the parser would involve providing it with large
annotated datasets. As a result, we had to create an annotation tool that implements a
simple and easy to use approach to annotation. It concerns the first levels of the annotation
scheme defined in the previous subsection, i.e. asking users to define actors, actions, objects
and properties.

We named our tool “S-CASE Requirements Annotation Tool”. We provide an introduction of
our tool here, including a comprehensive example of its usage, without however fully
presenting the development of the tool. The full documentation of the tool shall be included
in the deliverable 5.2 (Tools for developers) of S-CASE.

A user should be able login to his/her account.

is_actor_of

has_actor

acts_on

receives_action

ThingType OperationType ThingType Level 1:

actor action object Level 2:

useractor action theme Level 3:

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [29] of [36]

4.3.1 Usage of the Annotation Tool

The S-CASE Requirements Annotation Tool is a web platform that allows users to create an
account, import one or more of their projects and annotate them. As mentioned above, the
tool allows specifying terms (or phrases) as one of the following entities:

 Actor

 Action

 Object

 Property

Concerning relations between these terms, the following relations are available:

 IsActorOf, which is declared from Actor to Action

 ActsOn, which is declared from Action to Object or from Action to Property

 HasProperty, which is declared from Actor to Property, or from Object to Property, or
from Property to Property

Notice that we refrain from declaring also the opposite relations (e.g. HasActor) in order to
keep the tool as simple as possible. Thus, the tool presents a very simple task to the user;
there are only 4 entities and 3 relations, while all of them are quite close to the definitions of
the English language. In specific, the triple Actor-Action-Object is actually quite similar to
SVO, while Property represents mostly modifiers (adjectives, phrases, etc.). Finally, the tool
offers the option of automatically annotating software projects in order to facilitate the
process of manual annotation.

Mapping the annotated terms to the ontology is quite straightforward, yet not trivial. The
mapping is given in Table 6.

Table 6 Mapping of S-CASE Requirements Annotation Tool entities and relations to the ontology

Annotation Tool Entities and Relations OWL Class or Property

Actor actor

Action OperationType

Object object

Property property

IsActorOf is_actor_of, has_actor

ActsOn acts_on, receives_action

HasProperty has_property, is_property_of

Note especially how Action is not mapped to action, but rather to OperationType.
This is due to the user not specifying whether the defined operation is indeed an action,
or one of the other three subclasses of OperationType. Additionally, transitive relations,

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [30] of [36]

such as IsActorOf, are mapped to ontology properties also defining the opposite properties,

i.e. for IsActorOf both is_actor_of and has_actor are defined. Finally, since the
identifiers of the requirements as well as the project are known, the ontology classes
project and requirement are also instantiated, including all the respective high-level
properties, e.g. project_has_requirement, requirement_has_concept, etc. (see Table 1,
Table 2, and Table 3).

4.3.2 Example Annotated Project using the Annotation Tool

We provide here an example of using the annotation tool in order to clarify its cause and
illustrate how it can help create annotated instances out of software project requirements.
For this example, we use the functional requirements of project Restmarks (see Figure 6).
The annotated requirements are shown in Figure 12.

Figure 12 Annotated requirements of project Restmarks

FP7-ICT-610717 D3.1 Module for extracting software artefacts from text

Deliverable Version 1.0 page [31] of [36]

As shown in Figure 12, the annotations are comprehensive; any user with no experience or
training shall be able to correctly identify and label the appropriate entities and relations.

Upon annotating a project, the tool can export the annotations in different forms, including
the owl and ttl ontology forms. Thus, for the Restmarks project we visualize the owl that is
provided by the annotation tool in Figure 13.

Deliverable Version 1.0 page [32] of [36]

Figure 13 Ontology instance for project Restmarks, annotated using the S-CASE Requirements Annotation Tool

Deliverable Version 1.0 page [33] of [36]

One can spot several differences between the initial ontology instantiation provided in
Figure 13, and the finalized one given in Figure 7 for the same project. The annotation
scheme of subsection 4.2 is now clear. For example, terms such as “bookmark” or “tag” are

instances of class object in Figure 13 and can be further refined as instances of theme in
Figure 7. This also happens with instances of class actor and the subclass useractor, as
well as the class property and its various subclasses. Operations are generally instances of
action since this is the most usual subclass of OperationType. Note that the parser
can use synonym and type lexicons in order to find similar terms such as “bookmark” and
“bookmarks” and keep one of the two.

Concerning the properties of the ontology individuals, the two ontologies are once again
similar. For example, the low-level properties for the individuals of FR4 of Restmarks are
shown in Table 7. Comparing this table with Table 5, one can clearly see that the only
difference is the absence of the has_goal and is_goal_of properties between the
bookmark and account instances in Table 7. Since this information is not given by the
annotation tool (see Figure 12) it has to be provided manually in the next level of the
annotation scheme.

Table 7 Low-level properties for the ontology instances of the FR4 of Restmarks

OWL Individual Property OWL Individual

User is_actor_of add

add has_actor user

add acts_on bookmark

bookmark receives_action add

Finally, using ontology software such as Protégé (Protégé, 2014), one can easily perform the
required operations of the hierarchical annotation scheme in order to construct the
ontology instance of Figure 7 given the initial instance of Figure 13. Since the relations are
defined in the first level of the hierarchy, assigning different classes to certain individual
instances is simple.

FP7-ICT-610717 D.3.1: Module for extracting software artefacts from text

Deliverable Version 1.0 page [34] of [36]

5 Conclusions

The work discussed in this document summarizes our progress to date on the task of
recognizing and providing a formal semantics for informally expressed software
requirements in unstructured and semi-structured text (T3.1). We achieved the following
objectives related to this task:

 We collected an initial corpus to analyse and determine linguistic and conceptual
characteristics involved in software requirements.

 Based on our analyses, we devised an ontology that defines the concepts and
relations needed to formally represent static functionalities of a software system.

 We tested various methodologies for parsing functional requirement semantically
and implemented a pipeline architecture that can deal with the domain-specific
properties of the analysed input.

 We devised an annotation scheme and implemented a corresponding tool for S-
CASE users to provide and revise mappings from text fragments to ontology
concepts and relations manually.

Our goal is to continuously improve the module for extracting software artefacts from text
throughout the remainder of the project. Towards this goal, we are currently using the
implemented annotation tool to collect additional annotations that will help us retrain our
parsing pipeline to achieve better performance. We are further exploring the possibility of
extending our parser to match the objectives of sub-sequent tasks in WP3, including its
application in the question answer system to be developed in Task 3.4. For validation
purposes, we are planning to evaluate our approach intrinsically—by comparing the parser’s
output to manual annotations on a held-out data set—and extrinsically, within the question-
answer scenario.

FP7-ICT-610717 D.3.1: Module for extracting software artefacts from text

Deliverable Version 1.0 page [35] of [36]

References

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc
Gauvain. 2006. Neural probabilistic language models. In Innovations in Machine Learning,
pages 137—186. Springer Berlin Heidelberg.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and Pierre Nugues. 2010. A High-
Performance Syntactic and Semantic Dependency Parser. In COLING 2010:
Demonstration Volume, pages 33—36. Association for Computational Linguistics.

Bernd Bohnet. 2010. Very high accuracy and fast dependency parsing is not a contradiction.
In Proceedings of the 23rd International Conference on Computational Linguistics, pages
89—97. Association for Computational Linguistics.

Rong-En Fan, Kai-Wie Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. 2008.
LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research
9:1871—1874. Microtome Publishing.

John R. Firth. 1957. A synopsis of linguistic theory 1930—1955. In Studies in Linguistic
Analysis, Philological Society, Oxford; reprinted in Palmer, F., (ed. 1968), Selected Papers
of J.R. Firth. Longman, Harlow.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antònia
Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan Štěpánek, Pavel
Stranák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. 2009. The CoNLL-2009 shared
task: Syntactic and semantic dependencies in multiple languages. In Proceedings of the
Thirteenth Conference on Computational Natural Language Learning: Shared Task,
pages 1—8. Association for Computational Linguistics.

Zellig S. Harris. 1954. Distributional structure. Word 10(2/3):146—162.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic Labeling of Semantic Roles.
Computational Linguistics 28(3):245—288. MIT Press.

Sastry Nanduri and Spencer Rugaber. 1995. Requirements validation via automated natural
language parsing. In Proceedings of the Twenty-Eighth Hawaii International Conference on
System Sciences, volume 3, pages 362—368.

Mark Steedman. 2000. The Syntactic Process. MIT Press.

S. Palmer, Martha, Daniel Gildea, and Paul Kingsbury. 2005. The proposition bank: An
annotated corpus of semantic roles. Computational Linguistics 31(1): 71—106.

Project Restmarks, RESTAPPS, S-CASE Consortium, 2014.

Distributed Software Development, Joint Course, Mälardalen University (MdH), School of
Innovation, Design and Engineering (IDT), Sweden, University of Zagreb, Faculty of Electrical
Engineering and Computing (FER), Croatia, Politecnico di Milano, (POLIMI), Information
Engineering School, Italy, 2013, available online: http://www.fer.unizg.hr/rasip/dsd

S-CASE wiki, 2014, available online: http://wiki.scasefp7.com

Protégé, Stanford Center for Biomedical Informatics Research (BMIR), Stanford University
School of Medicine, 2014, available online: http://protege.stanford.edu

http://www.fer.unizg.hr/rasip/dsd
http://wiki.scasefp7.com/
http://protege.stanford.edu/

FP7-ICT-610717 D.3.1: Module for extracting software artefacts from text

Deliverable Version 1.0 page [36] of [36]

A. NLP Parsing Prototype

Our parsing prototype for extracting software artefacts from text is publicly available under
the following URL:

 http://www.scasefp7.eu/asset/semantic-parsing-prototype/

The ZIP archive contains a standalone version of our parser, including the preprocessing
pipeline and semantic analysis modules described in Section 3, implemented as platform-
independent JAVA code.

The standalone version of the parser takes text files as input that contain one sentence per
line and automatically induces semantic annotations for each input sentence. To run the
parser, the following command needs to be executed on the command line:

 sh parse.sh <FILENAME>

Corresponding output, represented using the concepts and relations introduced in Section 2,
will be written to a file with the same filename as the input using the file extension .ann.
The written file contains annotations in a tabular structure, describing mappings from
character positions to ontology instances as well as relations between instances.

