
Ad hoc Team Formation: Applying Machine

Learning Techniques to Cooperate without

Pre-Coordination

Themistoklis Diamantopoulos

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2012

Abstract

Nowadays, Multi-Agent Systems are widely applicable to various real-life situations,

such as confronting cooperative problems. However, the agents are usually a priori

coordinated towards their common goals. In situations where no prior coordination is

possible, the problem is described as an ad hoc team setting. This dissertation consid-

ers successfully confronting the problem of creating an ad hoc agent able to cooperate

with his teammates without being a priori aware of their strategies. Upon providing an

overview of Machine Learning, the main lines of research concerning the ad hoc team

setting are reviewed and the problem is decomposed to three subproblems. Firstly, the

ad hoc agent has to construct models of his teammates’ strategies, then he has to be able

to determine which of the constructed models are followed by each of his teammates,

and finally he has to devise an efficient strategy in order to successfully cooperate with

them. Concerning the construction of teammates’ models, the problem is reduced to

classifying any teammate’s action given the system state. A methodology for extract-

ing data instances from observed state-action pairs is described, and upon training an

appropriate classifier, the complementary task of mapping the classifier’s output to

valid actions given a current state is considered. The problem of determining which

model is followed by a teammate is confronted using the Naı̈ve Bayes classifier which

estimates the probability of a model given the actions of the teammate. Finally, the

strategy construction task is accomplished using Q-learning policies as answer mod-

els to any combination of teammates’ models. A novel approach to the computational

complexity of having multiple teammates is described; the ad hoc agent devises an

answer model for each possible teammate model, and merges the models operating on

their Q-values. Finally, the implementation is tested for its effectiveness and efficiency

in a search-and-rescue testbed. Furthermore, an analysis of the agent’s learning param-

eters is performed and agent teams with multiple ad hoc agents are considered. The

results are quite promising and shall certainly call for future research.

Keywords: Multi-Agent Systems, Ad hoc Teams, Agent Cooperation, Machine Learn-

ing, Reinforcement Learning

iii

Acknowledgements

I would like to take the opportunity to express my gratitude to the people that have

supported me in accomplishing this dissertation. Each in their own way have had

significant influence on the course of this project.

First and foremost, I would like to thank my supervisor, Dr. Michael Rovatsos, for

his trust in me to accomplish this dissertation. His guidance, support and constructive

criticism helped me to overcome the difficulties of this project.

I would also like to express my gratitude to my girlfriend, Ria, for her emotional

support, understanding, and patience throughout all phases of this dissertation.

I am sincerely grateful to my family. Without their continuous encouragement and

unconditional support, I would not be able to perform this work.

Last, but by no means least, I would like to thank my friends for their support in

completing this project.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Themistoklis Diamantopoulos)

v

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Scope of the Dissertation . 1

1.3 Aim of the Dissertation . 2

1.4 Overview of the Chapters . 3

2 Background on Machine Learning 5

2.1 Overview . 5

2.2 Unsupervised Learning . 6

2.2.1 Overview – The clustering problem 6

2.2.2 k-means Clustering . 6

2.3 Supervised Learning . 7

2.3.1 Overview – The classification problem 7

2.3.2 Decision Tree Learning Techniques 8

2.3.3 Neural Network Techniques 10

2.3.4 Statistical Learning Techniques 11

2.3.5 Support Vector Machine Techniques 12

2.3.6 Choosing the Appropriate Technique 13

2.4 Reinforcement Learning . 14

2.4.1 Overview – Markov Decision Process 14

2.4.2 The Problem . 15

2.4.3 The Solution – Techniques 16

2.4.3.1 Known-model Techniques 18

2.4.3.2 Unknown-model Techniques 18

2.4.4 Choosing the Appropriate Method 20

vii

3 Existing Work on Ad hoc Team Formation 23

3.1 Defining the problem . 23

3.2 Lines of Research . 23

3.2.1 Policy Selection . 24

3.2.2 Unknown Teammate Model 25

3.2.3 Adaptive Teammates – The Multi-Agent Learning Aspect of

the Problem . 25

3.2.4 Teacher – Learner . 27

3.2.5 Relation of this Work to Existing Work 27

4 A Novel Approach to the Ad hoc Problem 29

4.1 Analyzing the problem . 29

4.2 Policy Selection . 30

4.3 Teammate Modeling . 32

4.4 Strategy Construction . 36

4.5 Agent Design . 38

5 The Search-And-Rescue Domain 43

5.1 Overview . 43

5.2 The Game . 44

5.3 Agent Strategies . 46

5.4 The Ad hoc Agent Strategy . 47

5.4.1 Policy Selection . 47

5.4.2 Strategy Construction . 48

5.4.3 Teammate Modeling . 51

6 Experiments 59

6.1 Overview . 59

6.2 Known Teammate Models . 60

6.2.1 Using Modeled Policy . 60

6.2.2 Constructing Strategy . 62

6.2.2.1 Efficiency Tests 63

6.2.2.2 Effectiveness Tests 65

6.3 Unknown Teammate Models . 68

6.4 Learning Sensitivity Analysis . 70

viii

7 Conclusion and Future Work 75
7.1 Conclusion . 75

7.2 Future Work . 76

Bibliography 79

A Simulator Specifics 83
A.1 Agent Strategy API . 83

A.2 Agent Policy API . 84

A.3 Simulator Configuration . 84

A.4 Class Diagrams . 85

B A* Agent Specifics 89

C Experiment Results 91
C.1 Known Teammate Models . 91

C.1.1 Using Modeled Policy . 91

C.1.2 Constructing Strategy . 93

C.1.2.1 Efficiency Tests 93

C.1.2.2 Effectiveness Tests 94

C.2 Unknown Teammate Models . 95

C.3 Learning Sensitivity Analysis . 96

ix

List of Figures

2.1 An example final state of the k-means algorithm 7

2.2 An example decision tree for the tennis problem 9

2.3 An Artificial Neural Network . 11

2.4 A separation example using a Support Vector Machine 12

2.5 Taxonomy of RL techniques . 17

4.1 An example policy selection task with 2 models 31

4.2 The training phase of a teammate modeling task 33

4.3 The usage phase of a teammate modeling task 34

4.4 An example strategy construction task with 2 agents and 2 models . . 37

4.5 The core algorithm of an ad hoc agent 39

5.1 The search phase of a SAR terrain 44

5.2 The rescue phase of a SAR terrain 45

5.3 The steps of the Q-learning algorithm for a SAR terrain 49

5.4 The k-means voting Merge function. 50

5.5 Examples of different terrains . 51

5.6 An example representation of the attributes 52

5.7 A decision tree that determines the representation of an action 54

5.8 The preprocessor algorithm that returns an instance including the class

attribute given a state-action pair . 55

5.9 The preprocessor algorithm that returns an instance given a state . . . 56

5.10 The postprocessor algorithm that returns the predicted action given the

value of the class attribute. 56

6.1 Three simple A* teams, and two teams with 1 and 2 ad hoc agents . . 60

6.2 Graph of the total number of timesteps, regarding policy selection . . 62

6.3 The two Q-learning teams . 62

xi

6.4 Graph of the average time per timestep, regarding strategy construction 64

6.5 Team H . 66

6.6 Graph of the total number of timesteps, regarding strategy construction 67

6.7 The ad hoc modeler teams . 68

6.8 Graph of the total number of timesteps, regarding teammate modeling 69

6.9 Graph of the total number of timesteps needed versus the two learning

parameters. 72

A.1 The AgentStrategy interface . 83

A.2 The AgentPolicy interface . 84

A.3 Sample configuration file of the simulator 84

A.4 Class diagram of the simulator . 85

A.5 Class diagram of the agent interfaces 86

A.6 Class diagram of the ad hoc agent 87

B.1 Pseudocode of the A* algorithm for the SAR terrain 89

B.2 Pseudocode of the object Cell that represents a position of the terrain 90

xii

List of Tables

6.1 Total number of timesteps for 10 terrains, testing policy selection . . . 61

6.2 Average time per timestep for 3 terrains, testing strategy construction . 64

6.3 Total number of timesteps for 10 terrains, testing strategy construction 66

6.4 Total number of timesteps for 10 terrains, testing teammate modeling . 69

6.5 Total number of timesteps for 10 terrains, testing learning sensitivity . 71

C.1 Mean number of timesteps for the policy selection (6×10) 91

C.2 Mean number of timesteps for the policy selection (9×15) 92

C.3 Mean number of timesteps for the policy selection (12×20) 92

C.4 Mean time per timestep for the strategy construction models (6×10) . 93

C.5 Mean time per timestep for the strategy construction models (9×15) . 93

C.6 Mean time per timestep for the strategy construction models (12×20) 93

C.7 Mean number of timesteps for the strategy construction (6×10) . . . 94

C.8 Mean number of timesteps for the strategy construction (9×15) . . . 94

C.9 Mean number of timesteps for the strategy construction (12×20) . . . 95

C.10 Mean number of timesteps for the teammate modeling (6×10) 95

C.11 Mean number of timesteps for the teammate modeling (9×15) 96

C.12 Mean number of timesteps for the teammate modeling (12×20) . . . 96

C.13 Mean number of timesteps for the learning sensitivity (6×10) 97

C.14 Mean number of timesteps for the learning sensitivity (9×15) 98

C.15 Mean number of timesteps for the learning sensitivity (12×20) 99

xiii

Chapter 1

Introduction

1.1 Overview

During the past few decades, there has been an increasing interest on researching the

capabilities and applications of intelligent agents. According to S. J. Russell et al. [2],

an agent is defined as an autonomous entity which interacts with his environment and

plans his following moves so as to achieve his goals. Much of the research has mainly

focused on what are called Multi-Agent Systems (MAS), i.e. systems consisting of mul-

tiple intelligent agents. Depending on the desired setting, agents in such systems may

need to cooperate or compete against each other.

In cooperative MAS settings, successful coordination among the agents is usually

the key to achieving satisfactory results. Most MAS techniques attempt to attain a

desirable coordination level by optimally exploiting prior knowledge about the agents

that compose the team. However, real-world situations may be unpredictable. For

example, consider playing football with unknown teammates; one has to successfully

cooperate with his teammates in order to achieve the common goal (win the game),

without having any a priori information about their abilities, style of play, etc.

1.2 Scope of the Dissertation

Considering the football scenario given in the previous subsection, the players may

have different abilities. For example, one of them may be strong and good at tackling,

whereas another one may be slow but competent shooter. However, they do not know

each other and thus they are unaware of each other’s abilities. Furthermore, the foot-

1

2 Chapter 1. Introduction

ballers might not even speak the same language. Thus, each team has to perform well

in order to win without any prior coordination.

The situation described above is actually an ad hoc team formation problem. The

problem was posed by P. Stone et al. [3] as the design of an agent capable of efficiently

collaborating with unknown teammates without any prior coordination. Apart from

being applicable to various human problems, ad hoc problems usually arise in agent

(or robot) coordination situations.

Lately, the research conducted on agents (or robots) has given rise to multiple appli-

cations, such as production lines, auctions, search-and-rescue situations etc. However,

most agents are developed without any team-aware extensibility other than the one

initially given to them. The cost and effort of maintaining existing agent systems or

creating new agents from scratch could be drastically reduced, by initially implement-

ing them with respect to cases where an agent has to effectively extend an existing

team.

1.3 Aim of the Dissertation

This dissertation describes the implementation of an ad hoc agent able to address ef-

ficiently and effectively the challenge of successfully extending a team of agents that

performs a specific task. In particular, the agent’s effectiveness concerns whether his

team performs near-optimally when compared to a fully-coordinated team. In addition,

the ad hoc agent has to be efficient in terms of computational complexity, so that he

is capable of addressing real-time situations with minimum delay. The design of the

agent extends existing work on the area by providing with insightful ideas concerning

modeling the policies of teammate agents, identifying the policies followed by them,

and constructing an effective response strategy.

In terms of evaluation, a search-and-rescue (SAR) domain is considered, where

multiple agents with diverse abilities (e.g. robots which may have been created from

different manufacturers) have to coordinate in order to achieve their common goal,

i.e. rescuing people. SAR simulators are widely acceptable as satisfactory testbeds,

developed and improved constantly by the community (e.g. Robocup [4, 5]). However,

a simple simulator was implemented to effectively match the project’s specifics.

As opposed to the above specific testbed, effort has been made so that the methods

designed are as generic as possible, in order to ensure broad applicability. Machine

Learning algorithms are used to confront the various challenges that the agent faces.

1.4. Overview of the Chapters 3

The project’s primary objective is the design of an agent that can effectively take part

in a MAS without any prior coordination. Another secondary objective is to explore

the effectiveness of such techniques when the system comprises not only by fixed but

also by ad hoc learning agents. Finally, since the ad hoc agent does not follow fixed

policies, efficient tweaking of the various learning parameters is studied.

1.4 Overview of the Chapters

In accordance with the general aim of this dissertation as well as the methods used

to successfully confront the various issues that arose, the dissertation is split into 7

chapters1.

Chapter 2 of this dissertation is a brief review of the general field of Machine

Learning, while mainly focusing on areas and techniques that were deemed useful for

the implementation of the project.

Chapter 3 reviews the research conducted on the problem of ad hoc team formation.

The various approaches on the subject are discussed and their relation to the current

work is pointed out.

Chapter 4 thoroughly describes the methodology used for constructing the pro-

posed ad hoc agent, upon describing each discrete component of the strategy.

Chapter 5 briefly introduces the concepts of SAR domains and describes the SAR

testbed used to evaluate the ad hoc agent that was implemented. The applicability of

the main components of the agent is demonstrated and the evaluation framework is

defined.

Chapter 6 provides an overview of the experiments conducted, analyzing the ap-

propriate metrics and describing the objectives of the various experiments. In addition,

the results are interpreted and their significance is discussed.

Chapter 7 discusses whether the project objectives are accomplished as well as the

extent to which the methods implemented are effective and efficient. In addition, ideas

for future work on the domain are provided.

Finally, Appendices A and B provide with information about the implementation

specifics of the SAR simulator as well as the various agents that were created. Ap-

pendix C contains detailed results of the experiments that were conducted.

1Parts of the material of introductory and background sections have been presented before in terms
of the Informatics Research Review (IRR) or the Informatics Research Proposal (IRP). However, their
scope and proportion is insignificant when compared to the main contributions of this dissertation.

Chapter 2

Background on Machine Learning

2.1 Overview

According to T. M. Mitchell [6], Machine Learning (ML) is the field of Artificial In-

telligence which concerns constructing computer programs that automatically improve

with experience. A typical ML problem concerns generating a function that maps in-

puts to desired outputs. Although the field of ML is remarkably broad, the various ML

approaches to the aforementioned problem could be roughly categorized as follows:

• Supervised Learning

The algorithms of this area are given as input a so-called supervised or labeled

set of data, which they use to construct the function. The function can then be

tested on a non-labeled test set (see Section 2.3).

• Unsupervised Learning

Unsupervised ML algorithms attempt to construct the model function without

any labeled training set of data. This line of work typically concerns estimating

certain properties of the data.

• Semi-Supervised Learning

Combines the two aforementioned categories, usually as an extension to unsu-

pervised learning, where a relatively small labeled dataset is given.

• Reinforcement Learning

The algorithms of this category learn to adapt their behavior upon observing

their environment (see section 2.4).

5

6 Chapter 2. Background on Machine Learning

The above taxonomy is by no means definitive, since not only there are more areas in

ML, but also several ML methods may overlap instead of concretely belonging to one

specific category. ML has applications in several domains, solving diverse problems.

In terms of this dissertation, there are two main issues that are addressed by ML

techniques. The first is the problem of creating a model that can classify data according

to certain features. The second is the problem of acting intelligently in a specific

environment that provides rewards. Both problems are analyzed and handled in the

following sections, along with a minimal reference to the clustering problem, since

certain of its techniques are applicable in this dissertation.

2.2 Unsupervised Learning

2.2.1 Overview – The clustering problem

Unsupervised Learning (USL) is the field of ML that concerns finding specific structure

in data that is unlabeled, i.e. no information is provided for it. One of the most well-

studied problems of USL is the clustering task (also known as cluster analysis task).

Clustering is the task of distributing instances of data to clusters, such that each cluster

has similar instances. The term “similar” refers to a particular attribute of the data.

There are several lines of research concerning optimally clustering data instances.

Building a clustering model may be based on concentrating instances around centroids

(Centroid-based Clustering), distributing them statistically (Distribution-based Clus-

tering), or simply connecting “nearby” instances (Connectivity-based Clustering). The

aforementioned provide a rather small part of all the clustering approaches. However,

analyzing the various clustering techniques is redundant in terms of this dissertation.

Hence, the k-means clustering algorithm is the only algorithm analyzed here, not only

because it provides a typical example but also because it is an essential part of this

dissertation.

2.2.2 k-means Clustering

One of the most well-known Centroid-based Clustering techniques is the k-means clus-

tering algorithm, also known as Lloyd’s algorithm due to its creator [7]. The algorithm

distributes data points into k clusters, according to the centroid of each cluster.

2.3. Supervised Learning 7

Initially, the centroids are given some random values1. During the first step, the

algorithm runs for each data point and computes its distance from all centroids. Thus,

the point is assigned to the cluster which has the closest centroid. During the second

step, the new centroid of each cluster is computed as the average of its data points. The

aforementioned steps are repeated until the algorithm converges, i.e. until the centroid

values do not change.

The k-means algorithm is applicable to problems with multi-dimensional data. An

example for its application on a two-dimensions problem is shown in Figure 2.1. The

Figure 2.1: An example final state of the k-means algorithm, when applied to a two-

dimensional problem. Squares are data instances and circles are centroids. Clusters are distin-

guished by their color.

color of the data points (represented as squares) determines the cluster at which they

are assigned. The circles are the centroids of the clusters. The position of the centroids

is found by computing the average positions of the data points.

2.3 Supervised Learning

2.3.1 Overview – The classification problem

Supervised Learning (SL) techniques are very interesting because of their remarkable

applicability to real-life problems. One of the most well-known applications of these

techniques is the classification problem.

The definition of the classification problem is quite simple: construct a model that

can classify data according to a class attribute. At first, a set of labeled data instances

(hereafter referred to as the training set) is given to the algorithm. Each data instance

1If there is some perception about the data, it is possible that the centroids are given specific values
that accelerate the clustering process.

8 Chapter 2. Background on Machine Learning

consists of a set of values that correspond to certain attributes of the data, one of

which is called the class attribute. Since the values of all attributes (including the class

attribute’s) are known, the training set is used to construct the model. In simple terms,

the model is a function that provides with the value of the class attribute for a data

instance given the values of the other attributes of the instance.

Hence, a classifying technique creates a model that actually categorizes (classifies)

any instance according to the value of the class attribute. Thus, such algorithms are also

know as classifiers. As noted by S. B. Kotsiantis [8], no single classification technique

outperforms all others. The techniques’ accuracy depends on several properties, such

as the size of the training set, or the model’s tolerance to noise.

Using a taxonomy similar to that given by S. B. Kotsiantis [8], the classification

problem is confronted using the following categories of techniques:

• Desicion tree learning techniques

• Neural network techniques

• Statistical learning techniques

• Support vector machines techniques

Although the above categories do not cover all the possible classification techniques,

they are sufficient not only as representative examples of the literature. Thus, certain

algorithms of the above categories are presented and their efficiency is discussed in the

following subsections.

2.3.2 Decision Tree Learning Techniques

Decision trees are trees that classify the instances by recursively splitting them based

on attribute values. The nodes represent the instance attributes, and the branches repre-

sent the attributes’ values. The leaf node has the value of the class attribute. A simple

decision tree is shown in Figure 2.2. As seen in Figure 2.2, the tree is actually a set

of rules2, deciding whether the weather is good enough for playing tennis or not. The

nodes Outlook, Humidity and Wind are attributes of weather data. In this example all

attributes are nominal (i.e. their values are drawn from a finite set). The possible values

of each attribute are given as branches, e.g. the possible values of the nominal attribute

2In fact, according to S. B. Kotsiantis [8], decision trees can be represented with equivalent decision
rules, using conditionals (e.g. IF Outlook IS Sunny AND Humidity IS High THEN No).

2.3. Supervised Learning 9

Outlook

Wind

YesNo

Strong Weak

YesHumidity

YesNo

High Normal

Sunny Overcast Rain

Figure 2.2: An example decision tree determining if the weather is suitable for playing tennis,

as seen in [1]. Nodes are attributes and edges are their values.

Outlook are drawn from the set {Sunny, Overcast, Rain}. The class attribute (not

shown in the decision tree of Figure 2.2) is Weather Good For Tennis and has two

possible values, Yes or No. Hence, a tree classification algorithm constructs the tree

model and given the values of the attributes, it can determine the value of the class

attribute. For example, if the values of Outlook and Humidity are Sunny and Normal

respectively, then the data instance is classified as a Yes.

One of the most well-known decision tree algorithms is the ID3 algorithm3, created

by J. R. Quinlan [1]. The algorithm uses a TDIDT (Top-Down Induction of Decision

Trees) greedy logic. It starts by selecting a root node and keeps traversing the tree

starting from its root and moving towards its leafs. During each traversal, the algorithm

determines which node should be selected; the selected node is actually the attribute

according to which the data instances are split. The node chosen at each step is the one

having the minimum entropy. The entropy of the node is given by equation (2.1):

Entropy(Node) =−∑
n

n log2 n (2.1)

where n is a possible value of the node’s branches (i.e. a possible value of the attribute).

Intuitively, the entropy of an attribute is lower when the distribution of its possible

values is skewed. For example, in the tree of Figure 2.3.2, if Humidity is High 90%

of the time (and Low 10% of the time), then its entropy is approximately 0.47, whereas

if it is High 50% of the time (and Low 50% of the time), then its entropy is 1. Conse-

quently, the ID3 algorithm actually places the attributes that have unequally balanced

distributions closer to the root of the tree.

3Means Iterative Dichotomiser 3, although the acronym ID3 is used more often.

10 Chapter 2. Background on Machine Learning

Although ID3 is effective, it is limited to discrete-value attributes. In addition, it

is not very efficient, since it calculates all possible permutations of attributes. A later

extension from the same author is the C4.5 algorithm [9] which resolved the aforemen-

tioned issues. In particular, C4.5 also allows continuous-value attributes (as opposed to

only discrete-value ones). In addition, the algorithm prunes certain subtrees, replacing

them with single nodes, provided that the effectiveness is not severely influenced.

2.3.3 Neural Network Techniques

The field of Neural Networks (NN) is based on the notion of the perceptron [10]. Ad-

dressing the classification problem with a single-layered perceptron is straightforward.

The attribute values x1,x2, . . . ,xn are given as input to the model. The values are mul-

tiplied each with a weight value (out of w1,w2, . . . ,wn) and summed together. Then,

their sum is checked for overcoming a threshold t. The output of the perceptron is

given by:

y =


1, if ∑

i
xiwi ≥ t

0, if ∑
i

xiwi < t
(2.2)

The training set is used to adjust the weight values and the threshold. Upon training, the

network should be able to provide a good estimation of the value of the class attribute

y given the several input attribute values. Equation (2.2) is generally known as the

activation function of a perceptron, formally defined as a function that receives the

sum of the input values multiplied with the respective weights and returns an output

value. The function itself may be discrete or continuous and its output typically is

drawn from a range that corresponds to the desired output, i.e. the set of the possible

values of the class attribute.

Generally, the set of data instances is called linearly separable if they can be sepa-

rated into two subsets by a single hyperplane. In the two-dimensional case the hyper-

plane is actually reduced to a line. Although single-layer perceptrons are effective for

classification of linearly separable instances, they are unable to train optimal models

when the instances are not linearly separable. Due to the nature of the perceptron, clas-

sifying non-linearly separable sets requires multiple-layer perceptrons (also known as

multilayer perceptrons). The latter fall into the category of Artificial Neural Networks

(ANN) [11]. Such a network can be seen in Figure 2.3.

2.3. Supervised Learning 11

x1

x2

x3

x4

y

Hidden

layer

Input

layer

Output

layer

Figure 2.3: An Artificial Neural Network consisting of three layers. The network’s function-

ality depends highly on the hidden layer, thus the number of hidden layers and the number of

neurons in those layers are important decisions.

The nodes of the ANN of Figure 2.3 are perceptrons, while the edges include the

weights of the network. Intuitively, the weights between the layers represent the in-

fluence of the particular perceptron on the output. The multiple layers ensure that

the model created by the network is capable of addressing linearly inseparable data.

Finally, the activation functions of the network are generally fixed, thus its behavior

depends only upon its weights. Describing the various ways of updating the weights

lies beyond the scope of this dissertation.

2.3.4 Statistical Learning Techniques

As noted by S. B. Kotsiantis [8], the algorithms of this category actually implement

probabilistic models which in turn may be used to classify the instances. The most

representative statistical learning technique is the Naı̈ve Bayes classifier.

The Naı̈ve Bayes classifier is a generalization of the Bayes theorem for modeling

beliefs. Making “naı̈ve” conditional independence assumptions among the attribute

values A1, . . . ,An, the probability of each value Ci of the class attribute C can be esti-

mated as follows:

P(Ci|A1,A2, . . . ,An) =

∏
k

{
P(Ak|Ci)

}
·P(Ci)

∑
j

{
∏

k

{
P(Ak|C j)

}
·P(C j)

} (2.3)

12 Chapter 2. Background on Machine Learning

Concerning equation (2.3), for any value of the class attribute Ci the prior P(Ci) is

actually an estimation of the probability of selecting the value4. Given the values

of all attributes for a set of data instances, P(Ak|Ci) is the probability of an attribute

having a value Ak given that the class attribute’s value is Ci. This is computable using

the training set. Multiplying all such probabilities for all attributes gives the product

seen in the nominator of equation (2.3). This product implies that any probability

P(Ak|Ci) is independent from any other probability P(Al|Ci) with k 6= l. Although this

assumption seems rather naı̈ve, the classifier seems to perform well in certain cases.

The denominator of equation (2.3) is actually used only for normalizing the prob-

abilities of all values of the class attribute to 1. Thus, the Naı̈ve Bayes classifier is ef-

fective even if the denominator of equation (2.3) is omitted. Finally, zero probabilities

in attribute values may be easily handled by introducing very small values or adding

constant numbers to all probabilities before calculating the product (m-estimate).

2.3.5 Support Vector Machine Techniques

Support Vector Machines (SVM)5 are some of the most well-known classification tech-

niques and arguably the state-of-the-art in SL. Original research, conducted by V. N.

Vadnik [13], was based on a simple idea: construct a hyperplane that sets apart the

classifications. A simple classification example using an SVM technique is shown in

Figure 2.4.

optimal

hyperplane

hyperplane hyperplane

Figure 2.4: A separation example using a Support Vector Machine, for a two-dimensional

(i.e. two-attribute) problem. Squares and circles represent data instances that are separated by

various hyperplanes.

4If no information about the data is known, then the priors of all values may be set to be equal, thus
eliminating their influence.

5Also referred to as Support Vector Networks, a name given in [12].

2.3. Supervised Learning 13

The example depicted in Figure 2.4 concerns a two-dimensional space, where data

instances are classified according to two attributes providing the dimension values.

Example instances are depicted as small squares or circles. Thus, as far as the two-

dimensional example of Figure 2.4 is concerned, the hyperplanes are actually reduced

to single lines.

As seen in Figure 2.4, there may be various hyperplanes that separate successfully

a dataset. SVN techniques try to find the optimal hyperplane, i.e. the hyperplane whose

distance from the instances on either side is maximum. This distance is actually known

as the margin. According to J. C. Platt [14], maximizing the margin comes down to

solving the Quadratic Programming (QP) problem. The problem specifics lie beyond

the scope of this dissertation.

Several researchers have tried to solve the QP problem. An interesting approach is

the one followed by J. C. Platt [14], which arrived at the Sequential Minimal Optimiza-

tion Algorithm (SMO). The latter is widely accepted as the state-of-the-art method to

train SVMs.

2.3.6 Choosing the Appropriate Technique

As far as the classification problem is concerned, there is no optimal technique that

outperforms all others. All techniques analyzed in this section may be more or less

effective depending on certain criteria. For an extensive comparison along several of

them, see [8].

For example, while SVMs are probably the most effective techniques in terms of

accuracy, the learning procedure is relatively slow. This is also a crucial drawback

of ANNs. Thus, when the number of instances or the number of attributes is rather

large, it would be preferable to use a decision tree or a statistical learning algorithm. In

particular, the C4.5 algorithm is also considered quite effective, while it’s also faster.

Finally, there are also cases where the training data is provided incrementally, such

as one instance at a time. When it comes down to incremental learning, Naı̈ve Bayes

supports it out-of-the-box, whereas the other algorithms need certain modifications

that may have an effect on their effectiveness or efficiency.

14 Chapter 2. Background on Machine Learning

2.4 Reinforcement Learning

2.4.1 Overview – Markov Decision Process

According to L.P. Kaelbling et al. [15], Reinforcement Learning (RL) is the area of

Machine Learning which studies the problem faced by an agent that tries to adapt his

behavior through trial-and-error in order to successfully interact with a dynamic en-

vironment. The field of RL combines two research areas of Artificial Intelligence:

Supervised Learning and Dynamic Programming. As R. Sutton and A. Barto point

out [16], Supervised Learning methods are dependent upon a knowledgeable external

supervisor that should provide the agent with labeled training sets. Thus, this require-

ment is eliminated in RL, since the agent learns solely from its own experience.

The general framework of RL is usually modeled as a Markov Decision Process

(MDP). MDPs are actually a notion used to effectively model game states. According

to early work on the field by R. A. Howard [17]6, an MDP is defined as a tuple:

{S, A(s), Pa(s,s′), Ra(s,s′)}, ∀s ∈ S, a ∈ A (2.4)

where S is a finite set of states, A is a finite set of actions and A(s) is a finite set of

possible actions when being at state s, Pa(s,s′) is the probability of transitioning from

state s to state s′ by performing action a, and Ra(s,s′) is the reward of the aforemen-

tioned transition. Any problem that is modeled with MDPs is considered to satisfy the

Markov property. The latter states that the system’s next state and reward depend only

on the system’s current state and the last action chosen by the agent [16]. The property

can be described by the following equation:

Pr(st+1 = s′, rt+1 = r′ |st , at , st−1, at−1, . . . , s0, a0) = Pr(st+1 = s′, rt+1 = r′ |st , at) (2.5)

where st is the state of the system at time t7, at is the chosen action, and r′ is the

reward of the agent for transitioning to the next state s′ by performing action at (r′ =

Rat (st ,s′)). Thus, recalling equation (2.4), the probability that each possible state s′ is

the next is formally given as follows:

6Arguably not the first piece of work that refers to MDPs, but certainly one of the most well-known.
7Obviously st+1 denotes the state at time t+1. Note, however, that the algorithms may use the future

state that occurs j steps ahead, defined as st+ j. This generalization provides great flexibility, especially
in episodic games [15], but is usually omitted for simplicity. In terms of this dissertation, the time factor
may also be omitted for equations that are actually update rules. In such cases, the symbol of assignment
(←) shall be used in place of equality (=). Furthermore, the next possible state or action shall be primed
(e.g. s′ or a′), instead of subscripted in order to avoid confusion with the next definitive state.

2.4. Reinforcement Learning 15

Pa(s,s′) = Pr(st+1 = s′ |st = s, at = a), s ∈ S, a ∈ A(s) (2.6)

and the expected reward of transitioning to state s′ from the current state st is:

Ra(s,s′) = E(rt+1 |st = s, at = a, st+1 = s′), s ∈ S, a ∈ A(s) (2.7)

where s and a are the current state and the chosen action respectively.

Finally, concerning equation (2.6), the probability of transition is also known as

the transition function, thus discarding the element of probability. In other words, the

function could generally be definitive, defining which transition(s) are possible from

state s by performing action a. This specialization is usually quite straightforward for

simple MDPs, hence it is omitted.

2.4.2 The Problem

Obviously, the agent’s goal is to maximize his rewards. Although simply maximizing

the sum of the rewards is rational and correct, it is not optimum since identical weights

are given to short-term and long-term rewards [16]. Establishing a recency property,

the agent tries to maximize his expected discounted sum, which is computed as follows:

EDSt =
∞

∑
j=0

γ
j · rt+ j+1, 0≤ γ < 1 (2.8)

where rt+ j+1 is the reward of the agent for transitioning to the state st+ j+1 and γ is a

discount factor which controls the effect of future rewards in current decisions. The

larger the value of γ, the more important the long-term rewards.

The agent’s policy is defined as a function that determines the probability of choos-

ing an action when the system is in a particular state. Let h be the agent’s policy. Then

the value of a state s is given by the following state-value function:

V h(s) = Eh{EDSt |st = s}, s ∈ S (2.9)

where Eh denotes that the above value is expected based on the agent’s policy h. In-

tuitively, the value of a state denotes how beneficial it is for the agent to be in that

particular state. Another useful function is the action-value function, defined as the

value of choosing an action a when being at a state s:

Qh(s,a) = Eh{EDSt |st = s, at = a}, s ∈ S, a ∈ A(s) (2.10)

16 Chapter 2. Background on Machine Learning

Thus, the above function gives the value of an action concerning a particular state.

Intuitively, the value of an action given a state denotes how beneficial it is for the agent

to make that particular action when being in that particular state. Equations (2.9) and

(2.10) are also called value functions.

Finally, a policy h∗ is optimal if it has the maximum value functions among the

ones of all other policies. Thus, the maximum value functions are defined as follows:

V ∗(s) = max
h
{V h(s)}, s ∈ S (2.11)

Q∗(s,a) = max
h
{Qh(s,a)}, s ∈ S, a ∈ A(s) (2.12)

Combining equations (2.9), (2.10), (2.11), and (2.12) is proven [16] to give the follow-

ing equation:

Q∗(s,a) = Eh{rt+1 + γV ∗(st+1) |st = s, at = a}, s ∈ S, a ∈ A(s) (2.13)

Thus, it is now obvious that finding either one of the values (2.11) and (2.12) means

immediately finding the other too. Finally, the optimal policy may be defined as:

h∗(s) = arg max
a∈A(s)

{Q∗(s,a)}, s ∈ S (2.14)

Hence, finding an optimal policy comes down to finding any of the two optimal value

functions. Note, however, that finding an optimal policy without finding any value

function is also adequate, since the agent is usually asked to play optimally regardless

of how he accomplishes optimal play.

2.4.3 The Solution – Techniques

Upon reducing the problem to finding an optimal value function or, if possible, finding

an optimal policy, various solutions are considered. This dissertation provides a taxon-

omy of all algorithms that effectively solve the problem, following the approach of L.P.

Kaelbling et al. [15]. Typically, RL techniques can be classified according to various

criteria. Some common criteria are the active or passive nature of the learner, or the de-

gree to which the learner’s perceptions are faithful to the actual environment. Although

those taxonomies are interesting, they deviate from the purpose of this dissertation.

The taxonomy given in this dissertation is directly connected to the problem dis-

cussed in the previous subsection. At first, let the probability function Pa(s,s′) and the

reward function Ra(s,s′) of this equation be called “model” for simplicity. Then the

taxonomy is considered along the following axes:

2.4. Reinforcement Learning 17

• Known-model techniques

All elements of (2.4) are considered to be known. The problem can be solved

with simple Dynamic Programming techniques.

• Unknown-model techniques

Only the state space and the respective actions are considered to be known. It is

necessary to either approximate the model or just not use it. Thus, two variants

are considered:

– Model-free techniques

Find an optimal policy without approximating the model.

– Model-based techniques

Approximate the model and use it to find an optimal policy.

Most RL techniques can be classified according to this taxonomy. An indicative clas-

sification is shown in Figure 2.5.

RL techniques

Unknown-model

Model-based

Prioritized

Sweeping
Dyna

Model-free

Temporal

Difference

Q-learningSARSATD(0)

Monte

Carlo

Known-model

Policy

Iteration

Value

Iteration

Figure 2.5: Taxonomy of RL techniques according to whether the model is known or unknown.

If the model is unknown, the techniques are categorized according to whether they devise a

policy by finding the model (model-based) or not (model-free).

The techniques shown in Figure 2.5 are briefly discussed in the following subsections.

18 Chapter 2. Background on Machine Learning

2.4.3.1 Known-model Techniques

At first, one could observe that the problem gets relatively simpler if all elements of

(2.4) are considered to be known. In this case, two Dynamic Programming algorithms

are considered: Value Iteration [18] and Policy Iteration [17]. The former finds the

optimal state-value function (see (2.11)) upon iterating through all possible action-

value functions using known properties, whereas the latter finds the optimal policy

using methods for solving linear equations on the action-value function (see (2.12)).

2.4.3.2 Unknown-model Techniques

Although known-model techniques are effective, they are usually inapplicable since in

most RL problems the probability function P and the reward function R are unknown8

(see (2.4)) [15]. Thus, the main goal of the RL techniques of this subsection is finding

an optimal policy without knowledge of the aforementioned functions. Model-free

techniques try to find an optimal policy without learning the model, whereas model-

based techniques approximate the model in order to use it to find an optimal policy.

Model-free Techniques

The techniques of this category are categorized to those using Monte Carlo methods

and those using Temporal Difference methods.

An algorithm using Monte Carlo was first introduced by A. Barto and M. Duff [19]

as a model-free approach that attempts to improve the Policy Iteration technique in or-

der for the latter to discard the need for a model. Typically, the Policy Iteration variant

executes a loop: it updates the optimal policy using the action-value function and then

it updates the action-value function using the optimal policy. This procedure is quite ef-

fective for games containing random variables since the rewards for transitioning from

the current state to a new state are averaged using Monte Carlo sampling. Monte Carlo

sampling ensures that the random samples effectively cover the simulation. Thus, the

action-value function is constantly improving and so does the policy.

Although Monte Carlo methods are useful for solving several kinds of problems,

they have certain disadvantages that render them inefficient in most cases. Specifically,

they work only in episodic problems and if the number of episodes is large, compu-

tational resources may be wasted easily on suboptimal solutions. To confront these

8Consider also the special case where the functions are known but the state space is so large that
processing all states is ineffective.

2.4. Reinforcement Learning 19

problems, R. S. Sutton [20] introduced Temporal Difference methods that combine

Monte Carlo techniques with Dynamic Programming algorithms.

Temporal Difference methods can be said to extend the Monte Carlo ones since

they actually use the same Policy Iteration variant, updating the action-value function

and then using it to update the optimal policy. The main difference between the two

classes of algorithms is that Temporal Difference techniques do not rely on updating

the action-value function by using the optimal policy. Instead, the update is done

recursively, thus a Dynamic Programming update function known as update rule is

used to approximate the current values of the function based on the former ones.

A primal approach on the field by R. S. Sutton [20] is the TD(0) algorithm. In

contrast with other algorithms, the update rule of TD(0) is applied on the state-value

function. This is rational since, as noted in 2.4.2, the value functions are actually

connected. Thus, the update rule for each state s is:

V (s)←V (s)+α ·
[
r+ γ ·V (s′)−V (s)

]
, s ∈ S (2.15)

where s is the current state, r is the reward of the agent for transitioning to the next

state s′, γ is once again the discount factor and is used similarly to equation (2.8), and

the learning rate α defines how quickly the algorithm converges to its target.

Another well-known algorithm of the field is SARSA, created by G. A. Rummery

and M. Niranjan [21]. The update rule of SARSA is given by the following equation:

Q(s,a)← Q(s,a)+α ·
[
r+ γ ·Q(s′,a′)−Q(s,a)

]
, s ∈ S, a ∈ A(s) (2.16)

where s is the current state, r is the reward of the agent for performing action a to

transition to the next state s′, a′ are the new possible actions. γ and α are the discount

factor and the learning rate and are used similarly to equation (2.15).

Finally, probably the most well-known algorithm of RL is Q-learning. Q-learning,

an algorithm created by C. J. Watkins and P. Dayan [22], relies on finding the optimum

action values by using the maximum following action value. Therefore, its update rule

is said to be off-policy. The algorithm’s update rule is shown below for each state s:

Q(s,a)← Q(s,a)+α ·
[
r+ γ · max

a′∈A(s′)

{
Q(s′,a′)

}
−Q(s,a)

]
, s ∈ S, a ∈ A(s) (2.17)

where the notation symbols are identical to the ones of equation (2.16). The algorithm

being off-policy is crucial since no knowledge of the action values is needed, as op-

posed to the former on-policy techniques. Thus, the optimal action-value function can

be estimated even if a non-optimum policy is followed.

20 Chapter 2. Background on Machine Learning

Finally, the optimum policy for the aforementioned Temporal Difference tech-

niques is computed using the following equation:

h(s)← arg max
a∈A(s)

{
Q(s,a)

}
, s ∈ S (2.18)

The careful reader may have noticed the similarity of the above equation to equation

(2.14). This assures that the problem is correctly approximated, as long as the Q-values

are computed optimally.

Model-based Techniques

One could say that the techniques of this category try to construct a model. A model

is estimated and the model-based techniques use this estimation to find the optimal

policy. The main class of algorithms in this area derives from Dyna, an architecture

created by R. S. Sutton [23]. At first, Dyna observes the current state, chooses a policy

and performs an action. Upon receiving a random state and action Dyna uses a Tem-

poral Difference method (e.g. Q-learning) and updates the model (see (2.6) and (2.7))

using the statistics obtained for states and actions by the Temporal Difference Method.

Dyna is effective for a variety of problems and in most cases converges to opti-

mal strategies. However, the algorithm keeps on randomly selecting random states

and actions even upon finding an optimal strategy. Moreover, in cases where the pol-

icy reached is not optimal, the algorithm’s randomness may result in an endless loop

among ineffective policies. A technique that improves on these shortcomings is Pri-

oritized Sweeping, created by A. W. Moore and C. G. Atkeson [24]. According to the

authors, each state is assigned a priority (hence the algorithm’s name) that determines

whether it should be updated or be left out as ineffective. Thus, the algorithms modifies

the priority of each state as well as the state’s predecessors.

2.4.4 Choosing the Appropriate Method

When trying to find solutions in complex RL problems, there is no method that out-

performs the others in all cases. In fact, it all comes down to choosing the appropriate

method that solves optimally the problem posed. Thus, when the model is known and

its computational burden is bearable, known-model techniques seem to be the optimal

solution to the problem. If, however, the model is not known, then an unknown-model

technique has to be selected.

2.4. Reinforcement Learning 21

Concerning the choice between model-free and model-based techniques, L.P. Kael-

bling et al. [15] prove an interesting point. According to the authors, although model-

based approaches seem to require fewer steps in order to converge to an optimal policy,

they also require much more computational effort for each step. Thus, an a priori esti-

mation of the state space should be the hint for selecting an approach. However, there

are cases where even this estimation is impossible. In these cases, there is usually a

tendency to use model-free approaches as it provides some “safety” knowing that the

computational complexity is not an issue.

Finally, an algorithm’s popularity may depend on several reasons. As L.P. Kael-

bling et al. [15] denote, Q-learning is the most popular RL algorithm since it effectively

converges to an optimal solution, even if the agent behaves randomly. That, along with

the algorithm’s simplicity and low computational complexity, are the main reasons why

Q-learning is popular not only for solving single-agent problems but also for extending

its functionality to the multi-agent case.

Chapter 3

Existing Work on Ad hoc Team

Formation

3.1 Defining the problem

The problem in study was posed by Stone et al. [3] as the design of an agent capable of

efficiently collaborating with unknown teammates without any prior coordination. The

ad hoc notion of cooperating without prior coordination is a challenge posed recently,

thus literature is rather limited on the subject. However, the problem is surprisingly

broad, resulting in diverse research that handles different aspects of it. The basic most

faithful line of research is the one solving the problem of creating an autonomous agent

that is able to collaborate successfully with unknown teammates [3].

However, either due to the problem’s difficulty or due to it having also other inter-

esting aspects, several other lines of research have emerged.

3.2 Lines of Research

Since the problem may be interpreted in various ways, an indicative categorization of

its aspects is attempted in this dissertation. In particular, based upon various criteria,

one can construct different subproblems. These criteria are:

• Partial knowledge of teammates’ policies

The ad hoc agent has a perception of the strategies that his teammates play. The

problem is reduced to determining the strategy that is selected.

23

24 Chapter 3. Existing Work on Ad hoc Team Formation

• Role of the ad hoc agent

The ad hoc agent may have to select among a set of fixed strategies to play or

devise an efficient strategy.

• Adaptiveness of teammates’ strategies

The teammates’ strategies may be either fixed or adaptive. In addition, a fixed

strategy may also be deterministic or probabilistic.

• Assistance given by teammates

The teammates may help the ad hoc agent adapt to the game by playing so that

he can learn more easily.

The following subsections cover the work on the various lines of research that corre-

spond to the above criteria.

3.2.1 Policy Selection

Probably the most reasonable compromise one could make for the teammate strategies

is that they are derived from a set of known policies. In other words, the ad hoc agent

has a probability distribution over the possible policies of the other agents. Although

this line of research seems to simplify the problem, it is still fairly difficult, since it is

possible that the policies are non-deterministic.

As S. Barrett et al. point out [25], the problem then is reduced to defining which

policy the ad hoc agent should play. At first, this problem is successfully confronted

using the Naı̈ve Bayes classifier (see subsection 2.3.4). Furthermore, the authors pro-

duce interesting insight on the subject by further extending it to make the ad hoc agent

construct (rather than merely select) his own policy using Value Iteration (see subsec-

tion 2.4.3.1).

A similar approach on the subject is the one followed by K. Genter et al. [26]. The

authors define the separate tasks as “roles” and devise a role selection algorithm. They

also study the case where role mapping is limited, i.e. a minimum number of agents

must select to play the same role in order to acquire maximum rewards. In addition,

upon selecting a role, role parameter fitting is a new problem posed when limited data

is available to the ad hoc agent.

3.2. Lines of Research 25

3.2.2 Unknown Teammate Model

Although the compromises mentioned in the previous subsection provide with inter-

esting insights, they tend to reduce the realism of the problem. A much more difficult,

yet also more realistic problem is the collaboration with totally unknown teammates.

As far as current literature is concerned, there are two different ways of solving the

aforementioned problem1.

The problem is interpreted by S. Barrett et al. [25] as a task of modeling the un-

known teammates. Hence, such a task may be accomplished by observing other team-

mates’ actions and constructing models that describe them. The model construction

process can be seen as a classification problem (see subsection 2.3.1) as long as the at-

tributes are clearly defined. Although having to observe teammates’ actions seems like

a compromise, S. Barrett et al. [25] reduce its significance by minimizing the number

of observed runs.

Another interesting approach is the one followed by F. Wu et al. [27]. The au-

thors regard finding teammates’ models redundant and construct an algorithm to plan

the next actions online, by constructing and solving a series of stage games. They

use Monte Carlo tree search (see subsection 2.4.3.2) to simulate action selection and

essentially find a satisfactory solution2.

3.2.3 Adaptive Teammates – The Multi-Agent Learning Aspect of

the Problem

This line of work essentially models the ad hoc problem as a team task where all agents

are learners. As S. V. Albrecht and S. Ramamoorthy point out [28], when multiple

learning agents try to adapt their behaviour then the problem may be confronted using

Multi-Agent Learning (MAL) algorithms.

MAL is the scientific field which concerns MAS that consist of learning agents.

The MDP tuple can be extended to the multi-agent case introducing a set of agents I.

1Generally, teammate (or opponent) modeling is an interesting task that concerns multiple areas of
MAS. However, in terms of this dissertation, the area of interest is reduced to the ad hoc team setting,
and the problem is solved under the context of modeling other agents to either imitate them or devise
efficient counter-strategies.

2One could not help but notice the similarities of the argument between this and the previous para-
graph approach with the RL argument posed in subsection 2.4.3: constructing the model in order to
devise the strategy or constructing the strategy at once. However, the term “model” here refers to the
agent’s teammates, whereas in subsection 2.4.3 it refers to the transition and reward functions of the
MDP.

26 Chapter 3. Existing Work on Ad hoc Team Formation

Thus, in respect to (2.4), a stochastic or markov game (SG) is defined as a tuple [17]:

{I, S, Ai(s), Pai(s,s
′), Rai(s,s

′)}, ∀s ∈ S, a ∈ A, i ∈ I (3.1)

where S is a finite set of states, Ai(s) is a finite set of agent i’s possible actions when

being at state s, Pai(s,s
′) is the probability of transitioning to state s′ when being at

state s and performing action ai, and Rai(s,s
′) is agent i’s reward for this transition.

Furthermore, each agent’s expected discounted sum is defined in respect to (2.8).

Much of the work on the field relies on extending the Q-learning algorithm to take

into account the teammates’ actions. Extending (2.17) to the multi-agent case is rather

straightforward. Considering a vector of all possible players’ actions:

~a =
[

a1 a2 · · · an
]
, ai ∈ AI(s), AI(s) = A1(s)∪A2(s)∪·· ·∪An(s) (3.2)

the new update function for each player i ∈ I is:

Qi(s,~a)←Qi(s,~a)+αi ·
[
ri+γi ·max

~a′

{
Qi(s′,~a′)

}
−Qi(s,~a)

]
, s∈ S, ~a∈AI(s) (3.3)

where s is the current state, ri is the reward of agent i for performing action ai and

transitioning to the next state s′, ~a′ are the new possible actions. In addition, γ is the

discount factor which controls the effect of future rewards and α is the learning rate

which defines how quickly the algorithm converges to its target.

Distinguishing the various algorithms initially comes down to defining the optimal

policy function, whether it is defined as an extension of (2.18) or not. Furthermore,

being aware or not of the other agents’ actions and rewards results in two lines of

research. When full knowledge of these parameters is assumed, the agents can use

techniques such as Team Q-learning [29] or Distributed Q-learning [30]. However, if

each agent is not aware of his teammates’ actions and rewards, he also has to learn

them. This line of research contains learning the teammates’ actions while playing and

using this beliefs in update rules similar to that of equation (3.3). Some of the most

widely known techniques are Joint Action Learning [31] and Nash Q-learning [32, 33].

Considering the aforementioned algorithms are only indicative, MAL literature is

remarkably broad. However, as noted by S. V. Albrecht and S. Ramamoorthy [28],

these algorithms are designed for homogeneous groups of agents. Thus, the authors

evaluate the performance of such algorithms when facing the ad hoc team formation

problem. Despite deviating from the previous paradigms, the authors point out an

interesting view on the topic.

3.2. Lines of Research 27

3.2.4 Teacher – Learner

Another slightly different line of research is the one described in this subsection. Con-

sider a situation where the agents try to help their ad hoc teammate select the optimal

moves. Since the agents actually act as teachers while the ad hoc agent is a learner,

this line of research is known as the teacher–learner model. Currently research on this

field is limited.

An interesting piece of research is the one by S. Barrett and P. Stone [34]. The

authors provide a theoretical approach for the cooperative multi-armed bandit prob-

lem. The problem contains two agents, a teacher and an ad hoc learner, who have to

cooperate in order to receive the maximum reward. In particular, consider having three

arms such that the teacher can pull all three of them, whereas the learner has to choose

between arms 2 and 3. In addition, let the maximum reward be given for pulling arms

1 and 2 (each by one of the two agents).

The learner does not have any prior information about the distribution of rewards

according to arm pulling. By contrast, the teacher has full information, yet he is inca-

pable of teaching without deviating from his optimal move. In other word, the teacher

may either select the optimal move (i.e. pull arm 1) or teach the learner by pulling

another arm, so that the latter may observe.

3.2.5 Relation of this Work to Existing Work

Upon defining the various lines of research on the ad hoc problem, the contribution

of this dissertation is assorted to the appropriate areas and compared with similar ap-

proaches on these areas. Generally, the problem confronted by this dissertation is the

design of an agent that shall be able to perform efficiently and effectively in an ad hoc

(previously unknown) situation.

Firstly, the role of the ad hoc agent is to construct models of his teammates. The

approach on this topic is similar to the one followed by S. Barrett et al. [25]. Both

implementations actually identify the need for a classification model to simulate the

actual policy of the teammates. However, the authors construct a model for the pursuit

domain, whereas the solution given here is more generic; a high-level framework is

constructed. The domain specific components are identified and a discussion is made

as to how they should be constructed.

Secondly, upon constructing models for his teammates, the agent should be able

to determine which model is played by every agent. The approach followed by this

28 Chapter 3. Existing Work on Ad hoc Team Formation

dissertation resembles once again the work of S. Barrett et al. [25]. Both implementa-

tions use the Bayes theorem (see subsection 2.3.4) in order to select among the various

models. The Naı̈ve Bayes classifier is sufficient as far as the policy selection task is

concerned.

Thirdly, the problem of constructing an effective and efficient answer strategy for

all combinations of teammate policies is put under consideration. As in [25], the prob-

lem is confronted using RL techniques. However, the task selected in this dissertation

is more fine-grained since it encompasses multiple goals and multiple teammates. Hav-

ing multiple goals means that pruning techniques such as Monte Carlo Tree Search (see

subsection 2.4.3.2) that is used by S. Barrett et al. [25] are not applicable since local

optima have to be avoided. Hence, the complexity has to be handled by reducing the

number of policies encountered, i.e. having a single-agent Q-learner as a response for

each policy.

Furthermore, since the agent was designed considering arbitrary number of team-

mates (in contrast to exactly four agents as in [25]), using an RL technique for any

combination of policies introduces computational complexity issues. Thus, these is-

sues are confronted using a single RL technique per possible policy and constructing

a merger for any combination of policies. In addition, the amount of learning required

concerning the main algorithms used in this project is put under consideration.

Finally, the evaluation testbed is an interesting example not only for the applica-

bility of ad hoc techniques but also for the way these techniques can be evaluated.

Thus, the problem of adaptive teammates is also partially confronted, since the experi-

ments include testing with fixed, probabilistic, as well as other adaptive ad hoc learning

agents. Concerning a scenario where multiple ad hoc learning agents form an effective

team, the approach of this project bears interesting similarities with the work of S. V.

Albrecht and S. Ramamoorthy [28]. Both lines of work focus on evaluating the per-

formance of a team consisting of learning agents in an ad hoc team setting. However,

the approach followed on this dissertation is directed mainly towards the creation of a

single ad hoc agent able to address situations of heterogeneous teams. By contrast, the

authors demonstrate the effectiveness of various algorithms that were designed with

homogeneous teams in mind to heterogeneous situations.

Chapter 4

A Novel Approach to the Ad hoc

Problem

4.1 Analyzing the problem

In accordance with Section 3, the main contributions of this dissertation refer to the

main problems posed in current literature. Thus, concerning cooperative ad hoc sce-

narios, the three main challenges addressed are:

1. Policy selection

The ad hoc agent has to play and at the same time observe his teammates and

determine which policy each agent follows.

2. Teammate modeling

The ad hoc agent constructs possible policies that his teammates may follow

upon observing their actions.

3. Strategy construction

The ad hoc agent has to devise an efficient strategy that conforms with the strate-

gies played by his teammates.

It is important to note that the above challenges are not separable. Any ad hoc agent

has to accomplish most or even all of these tasks in a satisfactory level. The follow-

ing subsections define the problems outlined here more formally and suggest possible

solutions.

The terminology and notation used in the following subsections are simple. Any

agent is considered to play a strategy. When this strategy is not fully known (i.e. when

29

30 Chapter 4. A Novel Approach to the Ad hoc Problem

others refer to a model of it), then it is called a policy or a model. Striving to make

our findings as generic as possible, the scenario contains I agents that make a move

for each timeslot t. The agents observe the state s of the system and choose to play

an action out of a predefined set of actions. Thus, the conditions defined by Stone et

al. [3] are met; the ad hoc agent is only able to observe his teammates, while they make

their moves. No communication with the other agents is possible.

4.2 Policy Selection

Concerning the policy selection task, the ad hoc agent is given a set of all possible

policies that one of his teammates may play. Thus, the problem is actually reduced to

estimating which policy is played by his teammate(s) at any time. Since no prior obser-

vation is possible, the agent has to constantly update his estimation of any teammate’s

model by observing his actions. Hence, the ad hoc agent wants to find the probability

of a teammate following a model given his actions.

The approach followed here is similar to the Naı̈ve Bayes classifier (see subsec-

tion 2.3.4). Firstly, the set of possible policies-models is defined as M = {M1,M2, . . .}.
Each model is defined such that it receives the state of the system and returns a distri-

bution over its possible actions. Consider a set of all possible actions:

A = {A1,A2, . . . ,An} (4.1)

The actual action At played by a teammate agent at timestep t is defined formally as

At = Ak, k ∈ {1,2, . . . ,n}, t ∈ {1,2, . . . ,T} (4.2)

Then, using Bayes theorem, one could find the probability of selecting a model i using

the following equation:

P(Mi|At) =
P(At |Mi) ·P(Mi)

∑
j

{
P(At |M j) ·P(M j)

} (4.3)

where P(Mi) is the prior distribution over the set of possible models, i.e. the initial

given probability of selecting model i. P(At |Mi) is the probability of an agent playing

action At given that he follows model Mi, and can be formally introduced as:

P(At |Mi) = Pr(action = At |model = Mi)

= P(Ak|Mi), if Ak = At (4.4)

4.2. Policy Selection 31

where P(Ak|Mi) is considered known since the model Mi is known. Considering an ob-

servation Actions = {A1,A2, . . . ,AT} for a series of timeslots, equation (4.3) becomes:

P(Mi|A1,A2, . . . ,AT) =
P(A1,A2, . . . ,AT |Mi) ·P(Mi)

∑
j

{
P(A1,A2, . . . ,AT |M j) ·P(M j)

} (4.5)

Making the “naı̈ve” assumption that the probabilities of playing any actions are inde-

pendent:

P(At ,At ′|Mi) = P(At |Mi) ·P(At ′|Mi), ∀t, t ′ ∈ 1,2, . . . ,T , t 6= t ′ (4.6)

then equation (4.5) gives:

P(Mi|A1,A2, . . . ,AT) =
∏

t

{
P(At |Mi)

}
·P(Mi)

∑
j

{
∏

t

{
P(At |M j)

}
·P(M j)

} (4.7)

Note that zero probabilities are handled by replacing them with very small numbers

and re-normalizing. Equation (4.7) is actually a form of the Naı̈ve Bayes classifier.

Its similarity to (2.3) is quite obvious. A simpler representation may be derived by

equation (4.5) as:

P(Mi|Actions) =
P(Actions|Mi) ·P(Mi)

∑
j

{
P(Actions|M j) ·P(M j)

} (4.8)

considering that P(Actions|Mi) is updated upon each new observation of the team-

mates’ actions. An example that visualizes the procedure of selecting among models

can be seen in Figure 4.1.

Figure 4.1: An example policy selection task with 2 models. For any new observed action, the

probability of each model is updated using the probability that the action is selected given the

model. Thus, a distribution is formed and the selected model is drawn from this distribution.

32 Chapter 4. A Novel Approach to the Ad hoc Problem

According to Figure 4.1, for any new observed action, the agent firstly updates the

probability of the actions given the model (P(Actions|Mi)) for each model (Mi), and

then he creates the probability of each model given the actions (P(Mi|Actions).

The model described above was selected for various reasons. Firstly, it is an incre-

mental classification function, meaning that the classifier’s model can be easily updated

for any new observation of agents’ actions, while it is also available for use at any time.

In addition, the classifier can give fast results, such that computing time is insignificant

at any timeslot. Concerning its effectiveness, it is sufficient since the “naı̈ve” condi-

tional independence assumption is quite reasonable. As stated above, the agents act

on an observe-and-then-act basis, meaning that they use elements of the environment

(state) and not any significant pieces of history to determine their next action. Thus,

any dependencies among the probabilities of actions are generally minimized.

Finally, there are two possible alternatives to choosing which model best fits a

teammate. A viable option would be to select the model with the highest probability.

However, this selection is rather over-simplified; if the probabilities among the models

are similar, then it is possible that the agent gets biased towards a particular model only

for it having slightly higher probability. A better approach would be to view the model

probabilities as a discrete probability distribution over the models. Then, it is possible

to draw the model from the distribution by drawing a floating-point number uniformly

from the range [0,1), and determine which model to use depending on the number’s

position in the distribution. For example, let M1 and M2 have probabilities 0.65 and

0.35 respectively, if the random number was in the range [0,0.65), then M1 would be

selected, and if it was in the range [0.65,1), then M2 would be selected.

4.3 Teammate Modeling

In the previous subsection, it was shown how the ad hoc agent confronts the problem

of selecting the model that best fits a teammate agent. The models themselves can be

either hardcoded “black boxes” that represent agent policies, or they may be totally

unknown. In this subsection, the teammates’ models are considered unknown, thus the

problem of constructing the model of a teammate agent is faced1. The problem has

strict assumptions; the ad hoc agent knows nothing about the teammate’s goals or style

of play.

1Naturally, the technique of this section can be easily extended to cover constructing the models of
all teammates. Thus, the subsection refers to modeling one teammate for simplicity.

4.3. Teammate Modeling 33

Consequently, it is not possible for the agent to construct the teammate’s model

on-the-fly, thus it is necessary that the agent observes his teammate for a number of

rounds2. However, the number of rounds may be quite small since the agent’s desider-

atum is not to design a perfect strategy; instead the agent has to create policies that

correctly recognize the main goals and can be clearly distinguished with a system sim-

ilar to the one in subsection 4.2.

The overall problem is solved by decomposing it to various subproblems. As men-

tioned in subsection 4.1, any agent observes a state and performs an action. The term

“model”, thus, refers to constructing a mapping from any possible state to an action.

Hence, the problem is decomposed to the following subproblems:

• Representing correctly the state and the action.

• Creating a model that successfully maps a state to an action.

A visualization of the model’s creation is shown in Figure 4.2.

Figure 4.2: The training phase of a teammate modeling task. The data preprocessor receives

an observed state-action pair and constructs a data instance {x1,x2, . . . ,xn,d}, where d is the

value of the class attribute.

The problem is modeled as a classification problem (see subsection 2.3.1). Each

instance corresponds to a state of the environment as well as a possible action of the

teammate agent. Note that it is necessary that the instance is constructed using full

state and action information since the output of the classifier is given relatively to the

state given. The attributes are constructed from the model using a data preprocessor as

shown in Figure 4.2. Constructing the attributes is not trivial; one has to exhaustively

describe the environment while avoiding any variables that are not generic enough to

model different runs of the same game.

2Initially, model construction is indeed impossible. The ad hoc agent has to be given some data.
However, note that it would be interesting to attempt an update of an existing model on-the-fly, i.e.
while playing.

34 Chapter 4. A Novel Approach to the Ad hoc Problem

For example, consider a simple three-armed bandit game, where 3 randomly placed

arms are labeled 1, 2, and 3. The agent has to pull the arm labeled 1 in order to win. The

agent continuously plays the game with a fixed strategy: pull the arm labeled 13. The

definition of the problem should actually describe the attributes of the model. There

are two ways to model the attributes: either model each arm pulling with respect to its

relative position from the other arms (e.g. left, center, right) or model each arm pulling

with respect to its label (e.g. 1, 2, 3). The key to selecting between the representations

is to find which one of them exhaustively describes the game, yet is generic enough

to be valid for different game situations. Hence, the first model is not appropriate to

model the game, since it may be possible that an observed game instance had the three

arms placed in ascending order from left to right (i.e. 1, 2, 3), whereas the next game

instance had them placed in descending order (i.e. 3, 2, 1). Thus, had the model been

determined by the first game instance, it would have modeled the optimal response

“left”, thus it would have failed to properly model the second game instance, where the

optimal response is “right”. On the contrary, if the arm pulling attribute is determined

by its label, the model shall correctly identify the agent’s strategy: pull arm labeled 1.

Considering the above example, it is obvious that the attributes contain also the

class attribute. in other words, the preprocessor also has to model the teammate agent’s

action, in a way compliant with the classifier’s exit, as seen in Figure 4.2. During the

training phase, the classifier can be trained by comparing the true output d with the

predicted output y.

Upon training the model, the usage of the classifier requires a postprocessor, as

shown in Figure 4.3.

Figure 4.3: The usage phase of a teammate modeling task. The data preprocessor receives

the state and constructs a data instance {x1,x2, . . . ,xn}. The value of the class attribute is

reconstructed to a valid action by the data postprocessor.

The output y of the classifier is actually a value relative to the current environment.

Thus, following the three-armed bandit example given above, consider drawing the

3The game is indeed as simple as it gets, however the cause is demonstrated. For a more extensive
example see Section 5.

4.3. Teammate Modeling 35

output of the classifier from the set {1,2,3}. However, the agent’s actions may be

modeled as {le f t,center, right}, i.e. the system could only receive actions in the afore-

mentioned form. Hence, y has to be interpreted with respect to the current state of the

environment. Note that since a classifier typically outputs a distribution over the pos-

sible values of y, the mapping is actually performed between this distribution and the

distribution over the possible actions a. For example, the distribution given by the

model could be:

Distribution{1,2,3}= {1 : 0.65,2 : 0.20,3 : 0.15} (4.9)

If the arms are labeled from left to right with labels 3,1,2, then a representation of the

system’s state could be:

s = {armposition=le f t,label=3,armposition=center,label=1,armposition=right,label=2} (4.10)

The mapping from the distribution of the set {1,2,3} (see equation (4.9)) to that of the

set {le f t,center,right} is formally defined as:

P(a) = P(y), ∀y ∈ {1,2,3}, a ∈ {le f t,center,right} : a = posO f ArmLabeled(y,s) (4.11)

Function posO f ArmLabeled (short for “position of the arm of which the label is”) is

actually the function implementing the mapping between the two representations. It

receives the system state s, and an output y. The former contains the ordering of the

arms and the latter contains the distribution of labels of the arms. Thus, with respect

to equations (4.9)–(4.11), the probability of selecting the arm labeled 1 is assigned

to the probability of selecting the arm positioned in the center, i.e. P(center) = P(1).

Similarly P(le f t) = P(3) and P(right) = P(2). Thus, the distribution of equation (4.9)

is transformed to that of equation (4.12):

Distribution{le f t,center,right}= {le f t : 0.15,center : 0.65,right : 0.20} (4.12)

Finally, the task of selecting an appropriate classifier usually depends on the prob-

lem as well as the desiderata. Generally, as mentioned previously in this subsection,

there are few observation timeslots, thus making the program appropriate for the use of

“heavy” classifiers, such as C4.5 or SMO (see subsection 2.3.6). Since there are many

attributes, techniques such as Naı̈ve Bayes do not fit well the causes of the problem. In

addition, an incremental algorithm would have no clear advantage since the scenario

is split to processing and execution phases (see subsection 4.5).

36 Chapter 4. A Novel Approach to the Ad hoc Problem

4.4 Strategy Construction

According to the previous subsections, the ad hoc agent is able to create policies that

his teammates may follow, and choose which policy is actually followed among those.

What is not yet analyzed is how is the agent going to play in order to coordinate well

with these models. It is obvious that no single optimal strategy can be created since

every teammate’s strategy may be classified as a different observed policy/model at

different timeslots. The problem, thus, is defined as the construction of a strategy

capable of interacting well with a set of observed policies.

The strategy is constructed as a set of policies, such that each of them is suitable

for a combination of the other agents’ observed policies. At first, concerning a single

teammate, the ad hoc agent would have to create an answer policy for each of the

teammate’s policies. Thus, for any model Mi, the ad hoc agent creates an answer model

A(Mi), where for the purposes of this subsection the operator A(·) receives one or

more models as arguments and returns an answer model. As opposed to subsection 4.3,

the ad hoc agent has to create a specific strategy for a particular game instance as well

as a particular teammate policy. The agent uses the teammate’s policy to determine

whether the goals of the game are assigned to his teammate, or himself, or even both.

Upon determining his goal, the ad hoc agent has to create a policy in order to

accomplish it. Thus, before actually playing, the agent simulates the game and learns

his policy using an RL method. The problem is modeled as an MDP; the environment is

modeled as a reward space consisting of state-action pairs such that transitioning to the

goal state of the agent has a very high reward whereas all other transitions have lower

rewards. The rewards given to other agents’ goal states are not significant4. Similarly

to subsection 4.1, the state space is defined as the possible states of the environment

with the ad hoc agent5 in it and the action space contains the agent’s possible actions.

The ad hoc agent applies the Q-learning algorithm, updating the Q-values ac-

cording to equation (2.17). Although any RL algorithm could solve the problem,

Q-learning seems to be a good fit. As mentioned in subsection 2.4.4, model-free tech-

niques are generally considered safer choices when the state space is not known a

priori. In addition, Q-learning is generally effective when most rewards are similar

and only few of them deviate significantly. Finally, note that since the ad hoc agent has

limited time to create his policy, it is possible that the algorithm does not run until con-

4In practice, the other agents’ goal states could be given negative rewards, however if the reward
of the ad hoc agent’s goal is sufficiently large, then he shall not deviate. In any case, no high positive
reward should be given since the ad hoc agent may confuse his goal.

5Including the teammate agents is redundant since the ad hoc agent has defined his goal indepen-
dently. In addition, including other agents results in a very large increase of the problem’s complexity.

4.4. Strategy Construction 37

vergence. A sub-optimal solution is in most cases acceptable as long as the strategy’s

goals are accomplished.

Thus, having m possible models for 1 teammate, the ad hoc agent constructs m

strategies that “answer” the possible models. However, when having n teammates, the

agent has to create as many strategies as the possible combinations of the teammates’

models. Although generating all possible strategies is feasible, it is not scalable enough

since the agent has to train mn Q-learning algorithms. For example, consider having

4 teammates whose strategy is chosen out of 5 possible models. Then, the possible

strategy combinations are 54 = 625. Since computing a Q-value state action array is

on its own a rather “heavy” learning procedure, computing 625 Q-value state action

arrays provides with a rather inefficient way to construct the model.

The ad hoc agent can resort to certain compromises, such that the problem’s com-

plexity is drastically reduced. Consider having computed an answer model A(Mi) for

each model Mi. Thus, instead of computing a different answer model for each model

combination of the teammates, a Merge function can be used to combine the various

answer models. An example of using the Merge function is shown in Figure 4.4.

Figure 4.4: An example strategy construction task with 2 agents following 2 models (M1,M2).

The answer strategy is constructed as a merger of the answer policies (A(M1),A(M2)).

The Merge function is formally defined as follows:

Merge{A(Mi1),A(Mi2), . . . ,A(Min)}=A(Mi1,Mi2, . . . ,Min), ∀ik ∈ [1,m] (4.13)

where n is the number of agents and m is the number of policies that they may choose

from. Upon formally defining the Merge function, the problem is now reduced to

38 Chapter 4. A Novel Approach to the Ad hoc Problem

creating such a function. Obviously, the Merge function operates on the Q-values

of the answer models, since the Q-values actually constitute the model. A slightly

more intuitive definition would be that the Merge function depends on the goals of

each agent. However, at this phase each policy is actually a Q-value state action array

that sufficiently describes not only the policy’s goal but also the actions needed to

accomplish it. In any case, the Merge function is problem specific, since the Q-values

may differ depending on the goal states of the problem. Thus, different functions could

be useful for different distributions of tasks among the agents.

For instance, consider the case where the goals of n agents are aligned such that

half of them have to follow model M1 and the other half model M2, and the agent

believes n/2 agents shall follow model M1 (n is even). As a result, the agent has n/2

A(M1) models and (n/2−1) A(M2) models. Since the game has two models, A(M1)

actually has the same goals as model M2 and A(M2) has the same goals as model M1.

Since a “goal” in a Q array is denoted as a large Q-value having a Merge function that

sums all Q-arrays would make the ad hoc agent play a mixed model that has as primary

goal the same as A(M1) (or M2). Thus, the agent would play a policy similar to the

optimal, which is M2. The SumO f Qvalues function is formally defined as follows:

A(Mi1,Mi2 , . . . ,Min) = SumO f QValues{A(Mi1),A(Mi2), . . . ,A(Min)}⇔

QA(Mi1 ,Mi2 ,...,Min)
(s,a) = QA(Mi1)

(s,a)+QA(Mi2)
(s,a)+ · · ·+QA(Min)

(s,a)⇔

QA(Mi1 ,Mi2 ,...,Min)
(s,a) =

n

∑
k=1

QA(Mik)
(s,a), ∀s ∈ S, a ∈ A(s) (4.14)

The above model may also be easily formalized using weights, given there are models

that are chosen by more than one agent, as in the example given. Other specific Merge

functions could be defined for different cases. For example, the average of the Q-

values could be computed instead of the sum of them. The average operator could

be useful if the absolute Q-values (and not only their relative values to one another)

needed to have the same order as a simple Q-array. Another interesting operator is

given in subsection 5.4.2.

4.5 Agent Design

Upon analyzing the various components that correspond to the challenges posed in

subsection 4.1, the design of an ad hoc agent is demonstrated. The various design

decisions are analyzed and discussed. The core algorithm of the agent is shown in

Figure 4.5.

4.5. Agent Design 39

DECLARATIONS

Data Instance DI = {x1,x2, . . . ,xn,d}
Unknown Data Instance UDI = {x1,x2, . . . ,xn}
DI =DATAPREPROCESSOR(s,a) (see Figure 4.2)

UDI =DATAPREPROCESSOR(s) (see Figure 4.3)

a =DATAPOSTPROCESSOR(s,y) (see Figure 4.3)

y =USECLASSIFIER({x1,x2, . . . ,xn}) (see Figure 4.3)

TRAINCLASSIFIER(DI0,DI1, . . . ,DIT) (see Figure 4.2)

UPDATENA ÏVEBAYES(A,Mi) (see Figure 4.1)

OBSERVATION PHASE

foreach (Policy Mi)

foreach (Observed timestep t)

Observe state st and action at

Compute instance DIMit =DATAPREPROCESSOR(st ,at)

PROCESSING PHASE

foreach (Policy Mi)

TRAINCLASSIFIER(DIMi0,DIMi1, . . . ,DIMiT)

foreach (Policy Mi)

Create answer policy A(Mi) using Q-learning

foreach (Possible combination of n teammates and i policies)

Compute A(Mi1,Mi2, . . . ,Min) = Merge{A(Mi1),A(Mi2), . . . ,A(Min)}

EXECUTION PHASE

foreach (Timestep t)

foreach (Teammate n)

foreach (Policy Mi)

Observe teammate’s action At

UPDATENA ÏVEBAYES(At ,Mi)

Select a model Mi according to its probability P(Mi|Actions)

Select the answer model A(Mi1,Mi2, . . . ,Min)

Select an action a from the answer model

Figure 4.5: The core algorithm of an ad hoc agent. The agent creates teammate models by

observing a limited number of runs, constructs effective answer policies, and determines which

one to use upon determining his teammates’ selected models.

40 Chapter 4. A Novel Approach to the Ad hoc Problem

The algorithm is divided into 3 phases, the observation, the processing and the execu-

tion phase. During the observation phase, the ad hoc agent observes his teammates and

creates instances using the data preprocessor. During the processing phase, the agent

constructs his strategy. At first, he trains a classifier for each policy, thus constructing

a model Mi that may be selected by any agent. In addition, the agent constructs an

answer policy A(Mi) for any policy Mi using Q-learning. After that, he uses a Merge

function in order to construct an answer policy for each possible combination of his

teammates’ selected policies. Finally, during the execution phase, the agent observes

the actions of his teammates and updates a Naı̈ve Bayes classifier concerning the poli-

cies for each one of them. Hence, he probabilistically selects a model for each one of

his teammates, thus constructing a combination of policies, one for each of the team-

mate agents. The ad hoc agent selects the corresponding answer policy and selects an

action according to it.

Consequently, implementing the ad hoc agent’s strategy comes down to defining

certain functions that are mainly problem-specific. Although, these functions were

discussed in the respective subsections, the design decisions are also summarized here.

Hence, one has to:

1. Create a data preprocessor and a data postprocessor

The preprocessor and the postprocessor are actually the functions that provide

the mappings needed to use the classifier in order to model a teammate’s policy.

Creating them is rather simple, as long as two main conditions are met:

– The attributes have to sufficiently cover the entire range of the problem.

– The attributes have to depend only on the relative state of the problem,

i.e. any attributes that may be valid only for a specific run of the problem

have to be avoided.

2. Use an appropriate classifier

The choice of the classifier should not be crucial for the effectiveness of the

strategy. However, it is generally preferable that the classifier is selected with

respect to the attributes. For example, when having many attributes, a rather

complex classifier like C4.5 may ideal. Since the number of data instances is

generally considered to be small, “heavy” classifiers such as the SMO or the

multi-layer perceptron are also considered good choices.

4.5. Agent Design 41

3. Use an appropriate Merge function

The Merge function is crucial since the merger of the Q-values not only has to

combine their information but it must also be a playable strategy. The goals

of the game should give a hint for the choice of a sufficient Merge function.

Generally, attention should be given to the Q-values themselves. Thus, if the

Q-values are skewed towards a specific state (or an area of states), then a function

that sums the Q-values should be sufficient. However, if the absolute value of the

merger is important, then the average of the Q-values seems like a more viable

option. Having multiple goals may require more complex Merge functions. An

example of multiple goals can be seen in subsection 5.4.2.

Chapter 5

The Search-And-Rescue Domain

5.1 Overview

The term “search-and-rescue” (SAR) generally refers to the procedure of searching

for people that are in danger and rescuing them. The people are usually in danger

due to a natural disaster (hence the similar term “disaster-rescue” as in [4]). SAR is a

large domain consisting of sub-domains that mainly concern the terrain of the disaster,

e.g. urban search-and-rescue for disasters including collapsed city buildings. SAR

testbeds have lately gained an increasing interest due not only to their social cause but

also to their interesting domain features, e.g. heterogeneity of the agent teams, real-

time requirements etc. [5].

An interesting approach on the field is the RoboCup Rescue [4, 5]. The competition

fields involve creating realistic simulators and/or creating competent agents or robots

to perform the rescue. In terms of this dissertation, search-and-rescue is considered

along a rather simpler axis, in sense that no specific constraints about the terrain are

imposed. Thus, the SAR system is a standard grid world. However, without loss of

generality, the SAR testbed could resemble a simple situation of a collapsed building.

Humans are trapped inside the building, and robots are sent to find them and bring

them out of the building.

Thus, the SAR grid world consists of the following elements:

• Open cells

An open cell, which may be occupied by the agents.

• Obstacles

Walls and other objects that block the way of agents.

43

44 Chapter 5. The Search-And-Rescue Domain

• Humans in danger

The humans that should be rescued in as little time as possible.

• Exit location

A location where humans are considered rescued and safe.

The above elements comprise the system. A scenario involves agents entering the SAR

terrain, going to the humans and rescuing them by bringing them out of the terrain’s

dangerous locations to the exit location.

5.2 The Game

Although there are several simulator implementations for the SAR domain [35, 36],

none of them could suit the purposes of this project. In particular, the project require-

ments contain a simple grid world with two humans in danger, which is rather unusual

in terms of current literature. Thus, a SAR simulator was designed and implemented

from scratch. The simulator is a properly designed Software Engineering project, of

which the full specification lies beyond the scope of this dissertation. Appendix A pro-

vides with selected class diagrams for the interested; the diagrams, however, are not

necessary to understand the functionality of the simulator.

A screenshot of the search phase of the simulator is shown in Figure 5.1.

Figure 5.1: The search phase of a SAR terrain. The goal of the agents () is to save all the

humans (), while avoiding obstacles ().

5.2. The Game 45

As seen in Figure 5.1, the agents all have the same starting point (blue cell). The goal

of the agents is to save all humans (red cells). Considering n agents, n/2 should go

to one of the humans and n/2 to the other. The two humans are placed such that their

distance from the starting point is not equal, thus they shall be referred as close and far

human. The rescue phase is quite simple. A screenshot is shown in Figure 5.2.

Figure 5.2: The rescue phase of a SAR terrain. The goal of the agents () is to return to the

exit point (), while avoiding obstacles ().

The goal of all agents is to go to the exit point (green cell) which coincides with

the entry point. The rescue phase is actually used as a complementary phase for the

problem. The problem is solved similarly to that of the search phase, only simplier

since this time all the agents have the same goal.

As shown in Figure 5.1, the terrain consists of distinct cells. Any cell can be

unoccupied, such as the open area and the goal location cells, or unoccupied, such

as the human and obstacle cells. When starting a new scenario, the agent is entering

the terrain from what shall be called his entry location. This location is also the exit

location. At any current position, the agent is able to move or try to move towards the

4 directions (North, South, East, West)1 or decide to stay still (Still). Concerning

a cell, it can be an open cell, or an obstacle, or it may contain a human.

A sample configuration file of the simulator is provided in Appendix A (see Fig-

ure A.3). The simulator provides two functionalities for each agent; the agent can
1Diagonal moves are not considered for simplicity.

46 Chapter 5. The Search-And-Rescue Domain

either be an active player or an observer (needed for teammate modeling as in sub-

section 4.3). The simulator supports having as many agents as wanted, as long as the

active players at any time are an even number due to the game specification; they have

to split evenly so that exactly half of them go to each of the two agents.

Considering n agents and 2 humans, it is assumed that n/2 agents are required to

carry each human back to the exit point. At the start of the search phase, the agents are

given a full map of the environment. Thus, their aim is to find an optimal path towards

the human of their choice and return back to the exit point once again by finding an

optimal path.

Concerning the formal definition of the simulator, for each agent a state s is defined

as the terrain map as well as his position in it. Thus, the state space is defined as a set:

S =
{

s|s = (Map, pos)
}

(5.1)

where pos is the agent’s position in the map2, and is formally defined as:

pos = (xA,yA) (5.2)

where xA and yA are the values of the positions concerning the vertical and horizontal

axes. In terms of this dissertation, the notation (x,y) is used to represent a particular

position on the grid. According to the above discussion, without loss of generality, the

set of the agent’s actions is defined as:

A =
{

a|a ∈ {North,South,East,West,Still}
}

(5.3)

The following subsections analyze the agent strategies of this game. For each

timeslot, all agent strategies receive the state of the system (equation (5.1)) and de-

cide to make an action (equation (5.3)).

5.3 Agent Strategies

Thus, each agent has to follow his strategy in order to find one human. A simple robust

strategy that finds the optimal path from the starting point to the human in danger is

created by representing the terrain as a graph. The open cells of the terrain are nodes

and any transition from an open cell to a neighboring open cell is an edge. The strategy

then can easily use the A* search algorithm [37] for graphs. The algorithm is actually

2Note that the Map is actually static during a whole search or rescue phase. However, including it in
the system state is preferable since it is used to define relative variables, such as the Manhattan distance
of the agent from the human.

5.4. The Ad hoc Agent Strategy 47

an extension of Dijkstra’s algorithm [38] for path finding. Since the agent is given

the location of the goal, human or exit, at the start of each search or rescue phase

respectively, an algorithm such as A* is ideal.

The pseudocode of the A* algorithm for the SAR terrain is shown in Figure B.1

in Appendix B. In terms of this section, it is only important to refer to the algorithm’s

main functionality. The A* algorithm finds the optimal path between two graph nodes,

i.e. in this case terrain positions. In addition, since obstacle cells are considered non-

reachable nodes (since no edges reach them), the algorithm avoids successfully any

obstacles. The heuristics of the algorithm ensure that the path found is optimal (see

Appendix B).

Hence, two strategies were created, one that selects the close human as a goal and

implements the A* algorithm to find it and one that selects the far human and finds

it using A*. These two strategies are named AstarClose and AstarFar respectively.

The rescue phase is handled similarly, only this time both strategies choose the starting

position as the exit position and find a path using A*. Finally, a probabilistic strategy

was created that makes either the actions of the close A* algorithm or the actions

of the far A* algorithms with a predefined probability. This type of agent shall be

named MAstar(p,q) where p and q are the probabilities of selecting the action that

AstarClose and AstarFar would perform respectively.

5.4 The Ad hoc Agent Strategy

This subsection analyzes how the methodology of Chapter 4 can be applied in the

specific SAR domain. The application of the three components described in Chapter 4

are analyzed in the following subsections.

5.4.1 Policy Selection

The strategies defined in the previous subsection implement two interfaces, the in-

terface AgentStrategy and the interface AgentPolicy3. Since all policies have to

conform to the AgentPolicy API, the A* agent policies can easily be used as models.

The abstraction of the policies allows the agent to create an instance TeammatePolicy

for each teammate and an instance MyPolicy for himself.

3These two APIs are actually the core of all agents of the simulator. However, analyzing them de-
viates from the purpose of this dissertation. The interested reader can read sections A.1 and A.2 of Ap-
pendix A for a detailed description concerning the functionality of AgentStrategy and AgentPolicy
respectively.

48 Chapter 5. The Search-And-Rescue Domain

Each instance TeammatePolicy actually keeps the perceived model of the team-

mate. It contains all models of for any teammate and implements the Naı̈ve Bayes

classifier as defined in subsection 4.2. The MyPolicy instance keeps the answer mod-

els of the agent, as well as the mapping from any combination of models to a particular

answer model. Finally, note that the models of any TeammatePolicy as well as the

models of MyPolicy all have to implement interface AgentPolicy4.

The agent can therefore either use one of the known models or create one of his

own, as long as it implements the AgentPolicy interface. Thus, if he has a set of

predefined policies, then he can set any one of them in action.

5.4.2 Strategy Construction

The RL strategy of subsection 4.4 is created upon determining a goal position for the

agent. Then the game can be modeled as an MDP. At first, the state space and the

actions are modeled according to equations (5.1) and (5.3). The reward function has

the following form:

Ra(s,s′) =


−1, if s′ = OBSTACLE

−10, if s′ = OPEN AREA

100, if s′ = goalPosition

(5.4)

where s is the agent’s current state5, and a his action of choice that leads to a new

state s′. Note that if the new state s′ is an obstacle, then the agent receives the negative

reward without, however, transitioning to it. However, it is considered a valid transi-

tion. The probability of ending up in a state is actually reduced to a transition function

where all valid transitions are defined in a deterministic way. Any action from state s

to state s′ is considered valid as long as the distance between the two states’ positions

is 1 cell. Thus, the SAR system is successfully described by (2.4). Furthermore, it is

obvious that the system’s next state as well as the rewards depend only on the system’s

current state and the last action chosen by the agent. Hence, the SAR system satisfies

the Markov property6 (see (2.5)).

4The models in the TeammatePolicy instances actually extend the BayesPolicy abstract class,
while the latter implements the AgentPolicy interface. See Figures A.5 and A.6 for a fine-grained
view of the system.

5The state actually refers to the agent’s perception of state, i.e. the terrain and his position in it.
6Typically, the system could be said to be a stochastic game rather than a simple MDP. However,

since other agents are not modeled at this stage, the system is actually an MDP.

5.4. The Ad hoc Agent Strategy 49

Upon defining the problem, applying an RL technique, such as Q-learning, to solve

it is straightforward. Equations (2.17) and (2.18) are indeed fully applicable to the de-

fined SAR problem. The steps followed by the algorithm are shown in Figure 5.3:

Q(s,a)← 0, ∀s ∈ S, a ∈ A

Observe initial state s

while (s 6= goal found)

h(s)← argmax
a∈A

{
Q(s,a)

}
a←

 h(s), i f ε > Random([0,1])

Random(A), otherwise

Execute action a

Observe reward r and next state s′

Q(s,a)← Q(s,a)+α ·
[
r+ γ · max

a′∈A(s′)

{
Q(s′,a′)

}
−Q(s,a)

]
s← s′

Figure 5.3: The steps of the Q-learning algorithm for a SAR terrain. During each timestep, the

action is selected using e-greedy exploration, and the Q-values are updated according to the

observed reward. The algorithm iterates until the goal is found.

Thus, according to Figure 5.3, the agent executes actions until he finds his goal (either

human in danger or exit). The agent explores the terrain using ε-greedy exploration.

Thus, the actions that he performs are either optimal with probability 1− ε or ran-

dom with probability ε. This ensures that the agent’s Q-values are updated uniformly.

Finally, the number of simulated runs is given as a parameter to the agent.

As noted in subsection 4.4, when having more than one teammates, the ad hoc

agent constructs a merger strategy to ensure scalability. As in subsection 4.4, for any

state s and any action a, Qm(s,a) is the Q-value of model m, and QM(s,a) is the Q-value

of the merger of the policies. In this case, summing the Q-values (see equation (4.14))

might be sufficient. However, since Q-learning in the SAR terrain is used as a path-

finding algorithm, it is preferable that the final Q-values have similar properties to the

original ones. Hence, the Q-values have to be merged with a voting-like algorithm so

as to preserve the so-called propensity of the agent towards a specific direction.

A simple example is provided to illustrate the notion of propensity in Q-values

when it comes down to path-finding. Consider having 2 policies that have the Q-value

Q1(s1,a1) = Q2(s1,a1) = 40 and 1 policy that has the Q-value Q3(s1,a1) =−100 for a

particular state s1 and action a1. Furthermore, suppose that performing action a1 when

50 Chapter 5. The Search-And-Rescue Domain

being in state s1 results in the goal state s′1. The merged Q-value QM(s1,a1) should

then have a value close to 40 because if the agents were to be treated as one, their

path should indeed contain the action a1 from the state s1 as a preferable move since

it actually results in a goal state. However, using equation (4.14), the final merged

value is QM(s1,a1) = 2 ·40+1 · (−100) =−20, which means that the merger strategy

would not consider going to s′1. Generalizing, if s′1 was an intermediate (as opposed to

a goal) state, then the merger would follow a suboptimal path. Hence, identifying the

main path of other agents actually comes down to find the path of the largest group of

agents. In terms of the above example, the value 40 should receive 2 “votes”, whereas

the value −100 should receive 1 “vote”.

Thus, each possible value of a Q-value should receive a vote for each agent that

uses it. However, generalizing the above example, it is possible that certain Q-values

are “close” to 40, and others “close” to −100, but none of them exactly 40 or −100.

This proximity feature is successfully confronted using the k-means clustering algo-

rithm. The algorithm of the Merge function is shown in Figure 5.4.

for (s ∈ States)

for (a ∈ Actions)

Initialize 2 clusters

Set clusterA centroid to max
{

Qm(s,a)
}
, ∀m ∈Models

Set clusterB centroid to min
{

Qm(s,a)
}
, ∀m ∈Models

do

for (m ∈ Policies)

Assign Qm(s,a) to the closest cluster.

Set clusterA centroid to E(x), ∀x ∈clusterA
Set clusterB centroid to E(x), ∀x ∈clusterB

while (clusters have not changed)

QM(s,a) =centroid of the cluster with most elements

Figure 5.4: The k-means voting Merge function. 2 clusters are created for each state-action

pair and the largest cluster’s average value is assigned to the merger’s Q-value.

The algorithm iterates for every state-action pair and creates 2 clusters for each Q-

value. Then, the k-means clustering algorithm is executed until convergence (see 2.2.2),

assigning the Q-value of each model to a cluster. Finally, the merger’s Q-value for

every state-action pair is defined as the centroid of the largest cluster (in terms of pop-

ulation).

5.4. The Ad hoc Agent Strategy 51

5.4.3 Teammate Modeling

As mentioned in subsection 4.3, the ad hoc agent has to observe his teammates for a

number of timeslots in order to construct models of them. The simulator has the ap-

propriate functionality that allows substituting agents. At first, a number of agents are

created as active players and the ad hoc agent observes them for a (configurable) num-

ber of rounds. Then, in accordance with subsection 5.2, the ad hoc agent substitutes

one of the active agents.

Applying the methodology described in subsection 4.3 is straightforward. Both

training and usage phases can be easily used as long as the appropriate attributes as

well as the class attribute are constructed. In other words, the problem is reduced to

constructing the data preprocessor and the data postprocessor of Figures 4.2 and 4.3

respectively. The way these two processors are constructed is crucial for the effective-

ness of the model.

Since the process is the same for all agents, without loss of generality, the case

where the ad hoc agent has to model one teammate is considered. Thus, the attributes

have to cover the state as seen from the teammate agent, while the class attribute has

to cover the possible actions of the teammate agent. In addition, it is necessary that all

these values are constructed in a relative way because the terrain is different for every

round. For example consider the terrains of Figure 5.5 and assume the agent wants to

go to the close human.

(a) (b) (c)

Figure 5.5: Examples of different terrains. The agent’s optimal action depends on his environ-

ment (distance from human, obstacles) and not on his position (4,0).

In Figure 5.5a the agent may find that while being in position (4,0), moving North

is the optimal action. Although the agent’s position in the terrains of Figures 5.5b

and 5.5c is identical, the agent’s optimal action in these terrains is East and West re-

spectively. In other words, the agent’s optimal action depends not only on his position

52 Chapter 5. The Search-And-Rescue Domain

in the terrain but also on the full terrain state, consisting of humans, obstacles, and open

area cells. This state actually provides an absolute representation of the attributes.

A relative representation is constructed as in Figure 5.6.

(a) Attributes x1–x12

(b) Representation of positions (c) Representation of actions – Attribute y

Figure 5.6: An example representation of the attributes. Attributes x1–x4 are distances of the

agent from the humans, while x5–x12 and y are defined using the agent’s position and action

respectively with relation to the positions of the close and the far human.

The first 4 attributes are defined as the absolute distance of the agent from the two

humans, along the two axes. Formally, let A be the agent, C be the close and F be the

far human, the first 4 attributes can be defined as:

x1 = |xA− xC| (5.5)

x2 = |yA− yC| (5.6)

x3 = |xA− xF | (5.7)

x4 = |yA− yF | (5.8)

Before defining the 8 remaining attributes, it is necessary that the action of the agent

is also expressed in relative terms. The representation for the example of Figure 5.6a

5.4. The Ad hoc Agent Strategy 53

can be seen in Figure 5.6b. The action of the agent is represented in relation with his

position compared to the positions of the two humans. As before, the agent’s position

is (xA,yA). Any other position is defined as (xi j,ykl) where the first pointers, i and k,

are defined with respect to the close human’s position, and the second pointers, j and

l, are defined with respect to the far human’s position. Thus, if the agent moves from

(xA,yA) to (xi j,ykl) and this action makes him move closer to the close human in the

vertical axis, then i =C. Additionally, if the same move makes him move closer to the

far human in the same axis, then j = C. Concerning the example of Figure 5.6a, the

definition of the pointers for the neighbor positions of the agents is shown in 5.6b.

Finally, in accordance with the above discussion, the 8 remaining attributes can be

defined as follows:

x5 =

1, if (xCC,yA) = OBSTACLE

0, otherwise
(5.9)

x6 =

1, if (xCF ,yA) = OBSTACLE

0, otherwise
(5.10)

x7 =

1, if (xFC,yA) = OBSTACLE

0, otherwise
(5.11)

x8 =

1, if (xFF ,yA) = OBSTACLE

0, otherwise
(5.12)

x9 =

1, if (xA,yCC) = OBSTACLE

0, otherwise
(5.13)

x10 =

1, if (xA,yCF) = OBSTACLE

0, otherwise
(5.14)

x11 =

1, if (xA,yFC) = OBSTACLE

0, otherwise
(5.15)

x12 =

1, if (xA,yFF) = OBSTACLE

0, otherwise
(5.16)

The class attribute is actually defined similarly. As shown in Figure 5.6c, the action

needed to move closer or further to the humans is now considered. Thus, the possible

actions of the agent are given in the form:

y = {axCC ,axCF ,axFC ,axFF ,ayCC ,ayCF ,ayFC ,ayFF ,aS} (5.17)

54 Chapter 5. The Search-And-Rescue Domain

where the notation axi j denotes the action needed in order to move from the current

position (xA,yA) to position (xi j,yA) and the notation aykl denotes the action needed

in order to move from the current position (xA,yA) to position (xA,ykl). Finally, the

notation aS refers to the agent staying still in his current position.

As one could observe, the relative representation of positions of Figure 5.6b and

the relative representation of actions of Figure 5.6c are quite similar in terms of the

input needed to acquire them. Thus, both mappings are handled using the decision tree

given in Figure 5.7.

x

C

C

x′3 < x3

F

x′3 > x3

x′1 < x1

F

C

x′3 < x3

F

x′3 > x3

x′1 > x1

x′1 6= x1

y

C

C

x′4 < x4

F

x′4 > x4

x′2 < x2

F

C

x′4 < x4

F

x′4 > x4

x′2 > x2

x′2 6= x2

S

x′2 = x2

x′1 = x1

Figure 5.7: A decision tree that determines the output representation of an action given the

current state and the next state that resulted from making the action.

The tree receives as input the attributes x1–x4 and x′1–x′4 which are created from states

s and s′ using equations (5.5)–(5.8). Its output is given in the form of (x|y)((C|F)(C|F))|S

with | being the OR operator and parentheses simply declaring precedence, thus omitted

in the final result. The notation is interpreted similarly to that of Figure 5.6b, e.g. if

the output is xCF then the position noted by the tree is closer to the close human and

further from the far one.

The actions are interpreted similarly. Consider, for example, that the agent of Fig-

ure 5.6a makes the action North. Thus the agent’s x distance from the close human

has been x1 = 3 and now is x′1 = 2. In addition, his distance from the far human has

been x3 = 4 and now is x′3 = 3. In addition, x′2 = x2 and x′4 = x4 since the agent did not

move along the y dimension. Parsing the tree gives xCC, meaning that the observed

5.4. The Ad hoc Agent Strategy 55

action (North), which is terrain-specific, is transformed to the output d = axCC which

adequately describes the move regardless of the terrain.

Conclusively, the preprocessor and the postprocessor of Figures 4.2 and 4.3 respec-

tively can be defined. The preprocessor actually has two different tasks:

• Create a data instance containing the class attribute given the state of the system,

the teammate’s position and his action.

• Create a data instance not containing the class attribute given the state of the

system and the teammate’s position.

The first task is handled using the algorithm shown in Figure 5.8

Input: s, a

Output: x1-x12, d

Find x1-x4 using equations (5.5)-(5.8)

for
(
at ∈ {North, South, East, West, Still}

)
Find s′ given state s and action a

Find x′1-x′4 using equations (5.5)-(5.8)

dt = representation of at using the decision tree of Figure 5.7

if (a = at)

d = dt

Find one of x5-x12 using respective equation ((5.9)-(5.16))

Assign all attributes x5-x12 that were not found to 0

return x1-x12,d

Figure 5.8: The preprocessor algorithm that receives as input a state-action pair and returns a

data instance which includes the class attribute. The algorithm iterates over all possible actions

and uses the attribute representation of each action in order to construct the data instance.

As shown in Figure 5.8, the first four attributes are easily computable. After that, an

iteration over all possible actions at is made and for each action its representation dt

is found using the decision tree. Then, the representation is used in order to find the 8

remaining attributes. Finally, the class attribute is actually one of the checked actions,

thus its respective representation d is also found and returned.

The second task of the preprocessor is similarly handled using the algorithm shown

in Figure 5.9.

56 Chapter 5. The Search-And-Rescue Domain

Input: s

Output: x1-x12

Find x1-x4 using equations (5.5)-(5.8)

for
(
at ∈ {North, South, East, West, Still}

)
Find s′ given state s and action a

Find x′1-x′4 using equations (5.5)-(5.8)

dt = representation of at using the decision tree of Figure 5.7

Find one of x5-x12 using respective equation ((5.9)-(5.16))

Assign all attributes x5-x12 that were not found to 0

return x1-x12

Figure 5.9: The preprocessor algorithm that receives as input a state and returns a data instance

which does not include a value for the class attribute. The algorithm iterates over all possible

actions and constructs the data instance using the attribute representation for each direction.

As shown in Figure 5.9, the first four attributes are once again computed easily. After

that, an iteration over all possible actions at is made and for each action its represen-

tation dt is found using the decision tree. Then, the representation is used in order to

find the 8 remaining attributes.

Finally, the postprocessor handles the task of receiving the current state s and the

classifier’s output y and transforming the latter to an action a (see Figure 4.3). This is

accomplished using the algorithm shown in Figure 5.10.

Input: x, y, yProbabilities

Output: ActionProbabilities

Find x1-x4 using equations (5.5)-(5.8)

for
(
at ∈ {North, South, East, West, Still}

)
Find s′ given state s and action a

Find x′1-x′4 using equations (5.5)-(5.8)

dt = representation of at using the decision tree of Figure 5.7

if (y[a] = d)

ActionProbabilities[a] = yProbabilities[a]

normalizer = normalizer + ActionProbabilities[a]

for
(
a ∈ {North, South, East, West, Still}

)
ActionProbabilities[a] = ActionProbabilities[a] / normalizer

Figure 5.10: The postprocessor algorithm that receives as input the current values of the at-

tributes and the predicted class attribute and returns the predicted action. The algorithm maps

the distribution given by the classifier to a respective distribution of valid actions.

5.4. The Ad hoc Agent Strategy 57

As shown in Figure 5.10, an iteration over all possible actions is made and each action

is checked for its representation in the current terrain using Figure 5.7. Thus, upon

mapping from the set of actions to the set of the possible values of the class attribute,

the probability of every action is assigned to the probability of the respecting class

attribute value. Finally, note that the mapping of the attributes is safe, meaning that it

is not possible for the sum of the probabilities to be more than 1. However, it is possible

for it to be less than 1, since not all class attribute values are necessarily represented

by valid actions. Hence, it is necessary to normalize the values as in Figure 5.10.

Finally, little discussion has to be made about the choice of a classifier in order to

classify properly the class attribute, i.e. actually predict the next action. As long as

the classifier is complex enough to handle the number of attributes (which is rather

large), satisfactory results shall be produced. Since the number of observing timeslots

is not very large, the classifier’s speed is rather irrelevant. As far as its accuracy is

concerned, there are no proper metrics due to the nature of the problem. In other words,

the input and output of the classifier does not coincide with the input and output of the

system. Only qualitative claims can be made for any relationship between them. In

terms of this particular problem, the C4.5 classifier was chosen (see subsection 2.3.2).

The implementation used is the J48, an open-source implementation of the algorithm

included in the Waikato Environment for Knowledge Analysis (Weka) [39].

Chapter 6

Experiments

6.1 Overview

The experiments conducted test the ad hoc agent’s performance along two basic axes:

effectiveness and efficiency. Concerning effectiveness, the objective is to determine

whether a team containing the ad hoc agent can perform near-optimally when com-

pared to other teams. The metric used to measure effectiveness is the mean number of

timesteps required by a team in order to successfully go to the humans in danger and

return to the entry point. As far as efficiency is concerned, the mean time per timestep

in milliseconds is used to determine whether a particular team is more efficient than

another1. The experiments are conducted along the following axes:

• Known teammate models

The ad hoc agent has a set of known models that his teammates follow. Two

cases are considered regarding the ad hoc agent’s strategy:

– The agent follows one of the known models.

– The agent constructs his own strategy to follow.

• Unknown teammate models

The ad hoc agent does not know his teammates’ models so he has to construct

them. In addition, the agent constructs his own strategy to follow.

The results of the experiments are presented in the following subsections.

1Note that the agents of each team are fully synchronized. Thus, each team’s efficiency is actually
measured as the efficiency of the team’s “slowest” agent.

59

60 Chapter 6. Experiments

6.2 Known Teammate Models

Concerning this set of experiments, the ad hoc agent is given a set of defined policies

as black boxes. Thus, the agent has to understand which model is followed by each one

of his teammate agents. Two cases are distinguished according to whether the agent

follows one of the known policies or constructs his own policy.

6.2.1 Using Modeled Policy

The ad hoc agent, upon determining the policies followed by the teammate agents,

selects one among them as his own strategy. The experiments of this subsection aim to

demonstrate the effectiveness of the Naı̈ve Bayes classifying method used for policy

selection (see subsection 4.2). The evaluation method resembles the one proposed by

S. Barrett et al. [25]. Five teams, each having n agents, are defined as in Figure 6.1.

n/2×AstarClose
n/2×AstarFar

(a) Team A

n/2×AstarClose
(n/2−1)×AstarFar
1×MAstar(0.25,0.75)

(b) Team B

n/2×AstarClose
(n/2−1)×AstarFar
1×MAstar(0.35,0.65)

(c) Team C

n/2×AstarClose
(n/2−1)×AstarFar
1×AdHoc

(d) Team D

(n/2−1)×AstarClose
(n/2−1)×AstarFar
2×AdHoc

(e) Team E

Figure 6.1: Three simple A* teams, and two teams with 1 and 2 ad hoc agents. Team A is

optimal, whereas teams B and C have one sub-optimal player each, and teams D and E have 1

and 2 ad hoc agents respectively.

As shown in Figure 6.1, the teams are quite similar; for example teams A, B, C,

and D have n− 1 identical agents and only 1 agent that is different for every team.

However, note that the AstarClose and the AstarFar agents are actually optimal (see

subsection 5.3). The algorithms always find the shortest path2 to the close and far

human respectively. Hence, team A is obviously optimal because, according to the

game specifics, agents have to be equally shared between the two humans.

As a result of the above discussion, comparing two agents comes down to com-

paring two teams that have n−1 optimal agents and 1 different agent, since the latter

2See Appendix B for the implementation of A*, along with a discussion about his optimality.

6.2. Known Teammate Models 61

is definitely less or equally effective to his optimal counterpart. Teams B and C, each

have MAstar agent that selects the optimal action with probability 75% and 65% re-

spectively. Finally, team D has an ad hoc agent that has to select among the policies he

is given, while team E has 2 ad hoc agents.

Concerning the specifics of the following experiments, each team consists of n = 4

agents. In addition, the ad hoc agent is given a set of 4 possible policies: {AstarClose,
AstarFar, MAstar(0.25,0.75), MAstar(0.75,0.25)}3, which he uses not only

to determine which policy is selected by his teammates but also to select a policy for

himself. The goal of the following experiments is to prove that team D (the ad hoc

agent’s team) is more effective than teams B and C and comes quite close to team A.

Concerning team E (team having 2 ad hoc agents), its purpose is to study the effect that

one adaptive strategy has to another. Thus, team E is also expected to have satisfactory

results compared to teams B and C. However, its effectiveness shall be compared with

team D as an attempt to demonstrate that the strategy is powerful enough when having

non-stationary teammates.

All teams entered 10 terrains, and each terrain run was repeated 10 times. In par-

ticular, each run in a specific terrain provides with the number of timesteps required

for a full game scenario. Thus, each run is repeated 10 times, providing with the

mean numbers of timesteps and the standard deviation for the specific terrain. Full

results are shown in subsection C.1.1 of Appendix C. Table 6.1 shows the total number

of timesteps computed as the sum of the mean number of timesteps (and the sum of

the respective standard deviations) for 10 terrains for 3 different terrain sizes: 6×10,

9×15, and 12×20.

Table 6.1: Total number of timesteps for 10 terrains, testing the ad hoc agent’s policy selection

component (teams D and E with 1 and 2 ad hoc agents respectively) against one optimal (team

A) and two suboptimal teams (teams B and C).

Total Number of Timesteps for Terrains of size

6×10 9×15 12×20

Team A 146.0±0.0 232.0±0.0 320.0±0.0

Team B 179.8±32.0 301.8±65.7 401.5±60.9

Team C 215.7±74.6 375.4±112.3 518.0±120.2

Team D 152.5±5.2 236.2±5.1 327.7±6.2

Team E 165.1±23.5 249.5±19.4 335.6±22.3

3As seen in Figure 6.1, no mixed A* strategies are actually used in team D. Hence, the mixed A*

policies are included in the set of possible policies in order to obscure the agent’s policy selection model.

62 Chapter 6. Experiments

The graph of Figure 6.2 provides a straightforward illustration of the results.

Terrain 6×10 Terrain 9×15 Terrain 12×20
0

200

400

600

To
ta

lT
im

es
te

ps

Team A
Team B
Team C
Team D
Team E

Figure 6.2: Graph showing the total number of timesteps, testing the policy selection compo-

nent of the ad hoc agent (teams D and E with 1 and 2 ad hoc agents respectively) against one

optimal (team A) and two suboptimal teams (teams B and C).

As seen in that Figure, the ad hoc agent’s team (team D) indeed has very positive

results. It outperforms all suboptimal strategies (teams B and C), while its effectiveness

is quite similar to the optimal (team A). Thus, the agent’s policy selection component

is quite effective when the agent observes stationary teammates. Furthermore, the team

that has 2 ad hoc agents (team E) has similar performance. As seen in Table 6.1, team

E also outperforms all suboptimal strategies, being slightly less effective than team D

in most cases. Although one might expect that the ad hoc agents would confuse one

another by obscuring the classification task, the agents quickly manage to decide on an

effective sharing of the tasks, with each one of them going to a different human.

6.2.2 Constructing Strategy

The experiments of this subsection aim to demonstrate the efficiency of the Reinforce-

ment Learning model used for strategy construction (see subsection 4.4). Two new

teams are defined as in Figure 6.3.

n/2×AstarClose
(n/2−1)×AstarFar
1×AdHocWithRL

(a) Team F

n/2×AstarClose
(n/2−1)×AstarFar
1×AdHocWithRLMerger

(b) Team G

Figure 6.3: The two Q-learning teams. The ad hoc agent of team F constructs an answer policy

for all possible combinations of teammate policies, whereas the agent of team G constructs

answer policies for the distinct teammate policies and merges them.

6.2. Known Teammate Models 63

As in the previous subsection, both teams have n− 1 identical optimal agents and 1

ad hoc agent each. The ad hoc agent of team F constructs an answer policy using

Q-learning for all possible combinations of agent policies, whereas the agent of team

G constructs an answer policy for all distinct policies and merges their Q-values for

any combination (see subsection 4.4). Due to the optimality of the n− 1 agents for

each team, the two ad hoc agents’ performance is isolated. In addition, the measured

performance is now decomposed to both effectiveness and efficiency. Apart from the

ad hoc agent being less or equally effective than his teammates, he is also less effi-

cient. The efficiency of the ad hoc agent’s is obviously expected to be lower than any

A* agent’s, since the former computes (at least) a Q-learning answer policy for each

possible policy. The learning procedure is indeed “heavy”, since the Q-learner has to

simulate a number of runs in order to compute the Q-values (see subsection 4.4).

Finally, since policy selection is not tested in this subsection, only 2 possible team-

mate policies are considered {AstarClose, AstarFar}. Thus, the influence of policy

selection is minimized, whereas strategy construction is thoroughly tested.

6.2.2.1 Efficiency Tests

The first set of experiments aim to demonstrate the efficiency of the merger strategy

(team G), as opposed to the naı̈ve strategy that constructs an answer policy for each

combination of policies (team F). Since the number of possible teammate policies is

restricted to 2, the two teams’ performance is tested with respect to the number of

agents. The latter is highly relevant because of the computational complexity of the

algorithms. As mentioned in subsection 4.4, the complexity of the naı̈ve strategy is

exponential with respect to the number of agents. By contrast, the merger strategy

achieves reducing the complexity so that it is linearly proportional to the number of

policies4. Finally, the different terrain sizes shall provide another interesting metric,

since each simulated run of the Q-learning algorithm is completed by finding the target.

Thus, larger terrains are expected to have higher overhead for both teams.

As a result of the above discussion, the experiments were conducted for teams of

2, 4, 6, and 8 agents in 3 terrain sizes: 6× 10, 9× 15, and 12× 20. Teams F and G

entered 3 terrains, and each terrain run was repeated 3 times, providing with the mean

time per timestep and the standard deviation for this terrain. Full results are shown

in subsection C.1.2.1 of Appendix C. Table 6.2 shows the average time per timestep

4Note, however, that an exponential overhead is expected, since the agent still has to create a strategy
for all possible combinations of agents and policies.

64 Chapter 6. Experiments

computed as the sum of the mean time per timestep (and the sum of the respective

standard deviations) needed for each agent, concerning different number of agents for

each one of the terrain sizes.

Table 6.2: Average time per timestep for 3 terrains, testing the efficiency of the agent that

constructs an answer policy for each combination of teammate policies (team F) versus that of

the agent that merges the distinct answer policies (team G), for different number of agents.

Average Time per Timesteps for Terrains of size

6×10 9×15 12×20

Team F 44.1±1.4 54.8±1.8 70.6±0.9
2 agents

Team G 57.6±5.5 74.8±3.8 93.2±3.1

Team F 174.1±13.9 229.1±5.7 341.4±8.5
4 agents

Team G 61.0±4.4 82.4±1.8 106.7±1.4

Team F 848.0±57.2 1233.7±63.3 1752.7±16.0
6 agents

Team G 81.2±5.3 106.0±2.7 126.9±2.2

Team F 3819.4±254.8 5373.4±88.3 8044.8±443.4
8 agents

Team G 155.5±12.6 202.3±6.9 213.8±4.1

As shown in Table 6.2, running the experiments for 3 terrains (as opposed to 10 in the

previous subsection) is sufficient since the difference between the time per timestep for

the two teams is significant.

The graph of Figure 6.4 provides an illustration of the results for the two teams.

2 4 6 8
0

2

4

6

8
·103

Number of Agents

Terrain 6×10

Ti
m

e
Pe

rT
im

es
te

p
(m

s)

2 4 6 8
0

2

4

6

8
·103

Number of Agents

Terrain 9×15

2 4 6 8
0

2

4

6

8
·103

Number of Agents

Terrain 12×20

Team F
Team G

Figure 6.4: Graph showing the average time per timestep, testing two strategy construction

components of the ad hoc agent for different number of agents, one that constructs answer

policies for all combinations of teammate policies (team F), and one that merges constructed

answer policies (team G).

6.2. Known Teammate Models 65

As seen in Figure 6.4, the merger model is generally more efficient than its naı̈ve coun-

terpart. This is actually expected since the calculation of Q-values is quite a “heavy”

procedure in terms of performance. For instance, having 3 teammate agents (i.e. 4

agents in total) and 2 possible policies means that the ad hoc agent of team F computes

23 = 8 Q-value arrays, whereas the agent of team G computes only 2 Q-value arrays.

Observing Figure 6.4, it is obvious that the merger model is much more scalable than

the naı̈ve strategy construction model.

Note, however, that both models have exponential complexity. This is observable

in Table 6.2, where the average time per timestep for both teams grows exponentially

with the number of agents. Nevertheless, the merger model’s performance is much

better since only the merging procedure is performed in exponential complexity. The

overhead of the merge phase is also evident by the fact that the merger strategy is

outperformed by its naı̈ve counterpart when there is only 1 teammate (i.e. 2 agents in

total). This is expected since in that case both ad hoc agents construct the same number

of Q-learning policies (1 policy), thus the merger’s overhead is observable. However,

the aforementioned overhead is rather insignificant when compared to the overall gain

in efficiency for larger teams.

Concerning the various terrain sizes, both teams have a significant performance

overhead in larger terrains. However, by examining the Table 6.2, one can conclude

that relative overhead is different for the two teams (this is also noticeable in Figure 6.4

since all three diagrams are in the same y-axis scale). For instance, concerning team

F, its average time per timestep for terrains of size 12× 20 is approximately double

the one for terrains of size 6× 10. This is expected since any simulated run of the

Q-learning algorithm is completed when the goal is found and the number of timesteps

needed is increased in large terrains. By contrast, observing the respective values for

team G, the slope is rather smaller. Hence, although both agents have to compute more

Q-values for any policy, since the naı̈ve approach once again computes the Q-values

for all combinations of policies, its performance is severely degraded.

6.2.2.2 Effectiveness Tests

Upon demonstrating the efficiency of the strategy construction models (teams F and

G), their effectiveness is tested against teams A and D. Furthermore, a new team that

has 2 ad hoc agents is created, as in Figure 6.5.

66 Chapter 6. Experiments

(n/2−1)×AstarClose
(n/2−1)×AstarFar
2×AdHocWithRLMerger

Figure 6.5: Team H, a team that has 2 ad hoc agents that construct answer policies for the

distinct teammate policies and merge them.

Concerning the following experiments, each team consists of n= 4 agents and, as men-

tioned above, the possible policies given to the teams are 2 ({AstarClose, AstarFar})
so as to isolate the performance of the strategy construction component.

The purposes of the following experiments are multiple. At first, the effective-

ness of team G (containing the ad hoc agent that merges answer policies) is measured

against teams A and D. Thus, the strategy construction model is compared to an op-

timal strategy (team A) as well as a strategy that detects teammate policies, yet coun-

teracts using fixed optimal models (team D), instead of constructing its own policy.

In addition, team F (naı̈ve ad hoc with RL approach) must not have such significant

gain over team G that could justify the need of using it despite its lack of scalability.

Finally, concerning team H (team having 2 ad hoc agents that merge answer policies),

the effect that one adaptive agent has to another is once again explored.

Once again, all teams entered 10 terrains for 10 runs per terrain, providing with

the mean number of timesteps and the standard deviation for each terrain. Full results

are shown in subsection C.1.2.2 of Appendix C. Table 6.3 contains the total number of

timesteps computed as the sum of the mean number of timesteps (and the respective

deviations) for 10 terrains for the 3 terrain sizes: 6×10, 9×15, and 12×20.

Table 6.3: Total number of timesteps for 10 terrains, testing the strategy construction compo-

nents (teams G and H with 1 and 2 agents with merger components respectively, and team F

with 1 agent that constructs all possible answer policies) against an optimal team (team A), and

a team with an ad hoc agent that follows optimal strategies (team D).

Total Number of Timesteps for Terrains of size

6×10 9×15 12×20

Team A 146.0±0.0 232.0±0.0 320.0±0.0

Team D 151.8±5.4 236.6±5.2 326.9±6.1

Team F 152.2±5.8 245.3±9.7 327.9±8.1

Team G 153.3±6.2 246.9±12.2 328.1±7.3

Team H 163.1±21.4 258.5±18.5 341.9±26.3

6.2. Known Teammate Models 67

At first glance, the results for all agent teams of Table 6.3 are actually quite similar.

This is also illustrated by the graph of Figure 6.6.

Terrain 6×10 Terrain 9×15 Terrain 12×20
0

100

200

300

400
To

ta
lT

im
es

te
ps

Team A
Team D
Team F
Team G
Team H

Figure 6.6: Graph showing the total number of timesteps, testing the strategy construction

component of the ad hoc agent with answer policy merger (teams G and H with 1 and 2 ad hoc

agents respectively) against its naı̈ve counterpart that constructs answer policies for all possible

combinations (team F), as well as against an optimal team (team A), and a team with an ad hoc

agent that follows optimal strategies (team D).

As seen in Figure 6.6, the merger agent’s team (team G) performs almost as effectively

as its simple ad hoc counterpart that follows one of the predefined optimal policies

(team D). Thus, the strategy construction component is highly effective, considering

that it successfully creates an answer policy that is significantly close to the optimal.

Furthermore, the total number of timesteps required by teams F and G for a full sce-

nario is approximately equal in all cases. Consequently, the k-means Merge function

of subsection 5.4.2 has been a good fit for the problem. Thus, team G should be used

in place of team F, as long as the Merge function is appropriate for the game specifics.

Finally, the team that has 2 ad hoc agents (team H) is once again quite effective,

since the results obtained are only slightly worse than those of team G. This is actually

quite interesting since the agents of team H have to classify one another to one of

the known policies. However, as opposed to the experiments of subsection 6.2.1, the

agents do not follow one of the known policies. Thus, in other words, each ad hoc

agent has to determine which policy his ad hoc teammate follows, while the latter

follows a self-constructed version of the policies. Consequently, the results for team

H indicate not only that the agents effectively classify one another but also that the

policies they construct are such close to the optimal that the classification task is not

obscured. Finally, note that the sum of standard deviations of team H is rather large

compared to the one of team G. However, this is generally inevitable, yet acceptable,

concerning the difficulty of the problem.

68 Chapter 6. Experiments

6.3 Unknown Teammate Models

Concerning this set of experiments, the policies followed by the ad hoc agent’s team-

mates are unknown. Thus, the ad hoc agent has to construct these policies on his own,

upon observing his teammates. The effectiveness of the teammate modeling compo-

nent as well as the agent as a whole (see subsection 4.3) is tested in this subsection.

Two new teams are defined as in Figure 6.7.

n/2×AstarClose
(n/2−1)×AstarFar
1×AdHocModelerWithRL

(a) Team I

(n/2−1)×AstarClose
(n/2−1)×AstarFar
2×AdHocModelerWithRL

(b) Team J

Figure 6.7: The ad hoc modeler teams. Teams I and J each have 1 and 2 ad hoc agents respec-

tively, where the ad hoc agents construct models for their teammates, determine which of these

models are followed by each one, and construct an efficient answer strategy.

As shown in Figure 6.7, the teams are defined similarly to those of the previous sub-

sections. Team I has n− 1 optimal agents and 1 ad hoc modeler agent, while team J

has n−2 optimal agents and 2 ad hoc modeler agents.

The ad hoc modeler agent constructs his teammates’ possible policies upon collect-

ing data from 5 random terrain runs, with team A playing (see Figure 6.1). Since Team

A is optimal, high quality instances are supplied to the agent’s classifier (C4.5 algo-

rithm as in subsection 5.4.3). Upon collecting data instances, the ad hoc agent’s team

(team I) replaces team A in the role of the active playing team. As in subsection 6.2.1,

the ad hoc agent’s efficiency is compared against the optimal team A as well as the

suboptimal teams B and C.

Concerning the specifics of the following experiments, teams of n = 2 agents are

considered and no information is provided to the agent5. Hence, the main goal of the

following experiments is to explore whether the ad hoc agent can successfully operate

in a previously unknown environment using as less data as possible. As far as team J

(team with 2 ad hoc modeler agents) is concerned, the main goal is to explore whether

a team of non-stationary ad hoc teammates can be more or at least equally effective to

teams B and C, and achieve performance as close to team A as possible. Furthermore,

5Actually, the only information provided to the agent is the fact that he has to create 2 agent policies.

6.3. Unknown Teammate Models 69

the performance of team J is compared to that of team I in order to analyze the effect

that one ad hoc agent has to another.

All teams entered 10 terrains, and each terrain run was repeated 10 times. The

mean number of timesteps as well as the respective standard deviation for each terrain

is shown in subsection C.2 of Appendix C. The total number of timesteps for all ter-

rains is again computed as the sum of the mean numbers of timesteps (and the sum of

the respective standard deviations). Table 6.4 contains the results for 10 terrains for the

3 terrains sizes: 6×10, 9×15, and 12×20.

Table 6.4: Total number of timesteps for 10 terrains, testing the ad hoc agent’s teammate

modeling component (teams I and J with 1 and 2 ad hoc agents respectively) as well as his

overall effectiveness against one optimal (team A) and two suboptimal teams (teams B and C).

Total Number of Timesteps for Terrains of size

6×10 9×15 12×20

Team A 146.0±0.0 232.0±0.0 320.0±0.0

Team B 169.1±24.2 298.2±51.0 412.1±66.9

Team C 213.2±64.5 370.4±113.0 520.6±128.6

Team I 155.4±4.9 256.2±6.7 333.9±9.7

Team J 180.6±40.0 270.0±45.3 354.3±37.8

The results shown in Table 6.4 are actually quite encouraging. The graph of Figure 6.8

provides an illustration of those results.

Terrain 6×10 Terrain 9×15 Terrain 12×20
0

200

400

600

To
ta

lT
im

es
te

ps

Team A
Team B
Team C
Team I
Team J

Figure 6.8: Graph showing the total number of timesteps, testing the teammate modeling com-

ponent as well as the overall effectiveness of the ad hoc agent (teams I and J with 1 and 2 ad hoc

agents respectively) against one optimal (team A) and two suboptimal teams (teams B and C).

As seen in Figure 6.8, the ad hoc modeler’s effectiveness is indeed remarkable. Team

I not only outperforms all suboptimal strategies (teams B and C), but also its effective-

70 Chapter 6. Experiments

ness is quite similar to the optimal (team A). The teammate modeling component of

the ad hoc agent is quite effective as long as the observed runs provided to the agent are

enough (see next subsection for an analysis of how many runs are enough). In addition,

the results shown in this subsection are very interesting since they actually apply to the

full ad hoc agent implementation with no prior information. Thus, as far as the SAR

domain of Chapter 5 is concerned, the ad hoc agent has managed to effectively (and

efficiently) participate in a game with unknown teammates.

Finally, the results for team J are also quite remarkable. Although the team consists

only of ad hoc agents, their cooperation is satisfactory since they actually manage to

outperform the agents of teams B and C, while their effectiveness is comparable to

that of team I. Further interpreting the results, all the components of the ad hoc agents

of Team J perform sufficiently, even if the problem becomes quite hard. In specific,

each ad hoc agent constructs policy models to represent the optimal strategies that

he expects his teammate to follow. However, both he and his teammate follow self-

constructed policies that are based on suboptimal models. Nevertheless, the agents

manage to effectively model unknown policies, create their own policies and classify

the strategy of one another. In addition, although the sum of standard deviations for

team J may seem slightly large, it is generally acceptable concerning the problem’s

difficulty. For example, a 12× 20 terrain scenario can be run in approximately 35.43

timesteps with overall 3.78 more or fewer timesteps.

6.4 Learning Sensitivity Analysis

As a result of the analysis given in the above subsections, the ad hoc agent is effective

enough even when the information provided to him is very limited. However, the

agent’s efficiency and effectiveness depend mainly on the parameters of the learning

methods used. In particular, the performance of the C4.5 classifier used for teammate

modeling (see subsection 5.4.3) depends on the number of runs that the ad hoc agent

is allowed to observe. In addition, the quality of the constructed strategy (i.e. the

Q-values, see subsection 5.4.2) produced by the Q-learning algorithm depends on the

number of runs that the algorithm simulates. The effect of these parameters is analyzed

in this subsection.

Thus, according to the above analysis, two parameters actually determine the ad

hoc agent’s effectiveness. A new set of experiments is defined similarly to those of

the previous subsections. The teams tested are all of type team I (see Figure 6.7a).

6.4. Learning Sensitivity Analysis 71

The ad hoc agent’s parameters are indicated using the notation team IK,L, where K and

L stand for the number of observed runs for teammate modeling and the number of

simulated runs for strategy construction respectively. K belongs to the set {3,5,7} and

L belongs to the set {300,500,700}. Note that the lowest values of K and L (3 and

300 respectively) are the limit values, lower than which the agent fails to perform the

required task. Consequently, the main purpose of these experiments is to explore the

relation between the parameters analyzed above with the agent’s effectiveness6.

As in the previous subsection, teams of n = 2 agents are considered. Further-

more, each team of agents is tested on 10 terrains providing with the mean number of

timesteps and the standard deviation for each terrain. Full results are shown in sub-

section C.3 of Appendix C. Table 6.5 contains the total number of timesteps computed

as the sum of the mean number of timesteps (and the respective deviations) for the 3

terrain sizes: 6×10, 9×15, and 12×20.

Table 6.5: Total number of timesteps for 10 terrains, testing the sensitivity of the ad hoc agent’s

learning parameters. Team IK,L contains an ad hoc agent who is given K observed runs to model

his teammates and L simulated runs to train his strategy.

Total Number of Timesteps for Terrains of size

6×10 9×15 12×20

Team I3,300 166.5±6.9 263.2±10.8 372.9±15.7

Team I3,500 175.6±6.4 273.6±10.6 361.9±11.1

Team I3,700 176.9±12.0 271.3±13.6 368.0±7.1

Team I5,300 168.8±7.7 260.2±12.7 372.4±10.1

Team I5,500 173.3±9.0 257.0±8.3 366.3±9.2

Team I5,700 175.0±7.2 276.3±7.6 357.2±8.2

Team I7,300 173.6±8.8 262.1±9.5 373.7±11.3

Team I7,500 168.8±6.0 261.9±11.7 368.3±7.7

Team I7,700 176.6±7.7 270.7±13.6 354.6±11.3

Observing Table 6.5, one could say that the differences among the timesteps required

among the various number of agents are rather small.

A rather more substantial illustration of the results is shown in Figure 6.9, which il-

lustrates how the sum of the average values is influenced by the values of the two funda-

mental parameters, number of observed runs and number of simulated Q-learning runs.

6Concerning efficiency is rather redundant since all agents considered in this subsection are efficient,
regardless the values of the two parameters.

72 Chapter 6. Experiments

3

5

7

300 500 700

170

175

Observed

Runs Simulated

Runs

To
ta

lT
im

es
te

ps

(a) Terrain 6×10

3

5

7

300 500 700

260

270

Observed

Runs Simulated

Runs

To
ta

lT
im

es
te

ps

(b) Terrain 9×15

3
5

7

300 500 700

360

370

Observed

Runs
Simulated

Runs

To
ta

lT
im

es
te

ps

(c) Terrain 12×20

Figure 6.9: Graph showing the total number of timesteps needed versus the two learning pa-

rameters: the number of observed runs for teammate modeling and the number of simulated

runs for strategy construction.

The diagrams of Figure 6.9 provide with interesting insight concerning the amount of

learning required to ensure optimal behavior.

As seen in Figure 6.9a, the learning needed in a small (and thus easier) terrain is

also relatively small, since having 3 runs to observe and 300 simulated runs is efficient.

Interestingly enough, the 9× 15 terrain (see Figure 6.9b) seems to be run optimally

when medium values are selected, such as 5 observed and 500 simulated runs. By

contrast, extreme values for both learning parameters seem to have worse performance.

Finally, concerning large terrains, such as the one of Figure 6.9c, the ad hoc agent

performs optimally when he has more timesteps to observe as well as more steps to

constructs his strategy.

6.4. Learning Sensitivity Analysis 73

Intuitively, since the terrain’s size actually represents the game’s difficulty, the

amount of learning required is proportional to the game’s difficulty. Thus, if the amount

of learning is less than the optimum, it is obvious that the agent performs worse than

his optimum potential. Further analyzing the diagrams of Figure 6.9, one could also

observe that when the amount of learning is more than the optimum, then the agent

does not perform any better. This behavior is actually the result of over-training the

learning techniques. In ML terms, the model created by the classifier of the teammate

modeling component overfits.

As mentioned in subsection 5.4.3, each data instance that is provided to the C4.5

classifier is extracted from the state and the action of the agent, in terms of a specific

terrain run. These state-action pairs are actually remapped along two main axes: the

agent’s distance from the humans, and the agent’s neighboring cells, either obstacles

or open areas. Thus, consider a terrain situation where the agent has an obstacle on his

left (west) and the human that he needs to go is 3 steps eastern than him7. If this terrain

situation occurs in many observed runs, then the model may classify this situation such

that the agent moves towards the human every time. However, in the actual executing

terrain, the agent may have to face a similar state as above with only one difference; he

may also have an obstacle on his right (east). In that case, the agent would try to move

towards the human, thus staying in place because of the obstacle.

Thus, in accordance with the above example, the agent’s model overfits when the

training set has quite similar data instances, while the values of the test set are slightly

different. As far as terrain size is concerned, similar situations are more likely to

happen in relatively small terrains when the number of observed runs is relatively large.

Ideally, the model should be trained with large terrains in order to assure that the data

instances obtained are similar, yet not identical. Alternatively, when the terrain size is

smaller, the agent may observe fewer runs. Conclusively, note that a straightforward

way to avoid overfitting the model would be to construct a well-balanced training set

and provide it to the agent.

7In ML terms, since the obstacle is irrelevant, it is denoted as noise.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In accordance with Chapter 1, the aim of this dissertation was to design an effective

as well as efficient agent that can participate in a cooperative game without any prior

coordination. The methodology described in Chapter 4 is spread along three axes:

creating models of teammate policies, determining the teammates’ chosen policies

based on their actions, and constructing an effective, yet efficient response strategy

concerning the team’s desiderata.

Thus, the three aforementioned axes were combined to form an ad hoc strategy.

The basic problems that each component of the strategy faces were identified as ML

problems and were confronted using ML (and RL) techniques. The techniques used

to construct the ad hoc agent’s strategy are well-known ML techniques, widely used

by the research community. In addition, the problems were solved in a novel way

regarding their efficiency.

Although the design of the agent has certain domain-dependent properties, the basis

of the implementation provides with clear methodology on recognizing and sufficiently

modeling a domain to conform with it. A full working example of recognizing the

specifics of a SAR domain was shown in Chapter 5. The SAR domain was also used

as a testbed in order to support the claims given in the introduction. Chapter 6 provided

specific experiments for all components of the ad hoc agent, testing his effectiveness

and, when deemed necessary, his efficiency.

The results of these experiments were actually quite interesting. All components

were found to be effective with relation to agents that play optimally. Concerning pol-

icy selection, the Naı̈ve Bayes classifier provided a quite effective way of determining

75

76 Chapter 7. Conclusion and Future Work

the teammate agents’ selected policies. Its performance was almost optimal despite

being given more policies to get obscured. The strategy construction task was also

especially effective. The merger of different answer policies considerably improved

the agent’s efficiency, without compromising his effectiveness.

Furthermore, since the ad hoc agent’s teammate modeling component was also

remarkably effective, the agent indeed had a complete approach on the ad hoc prob-

lem. Finally, tweaking the learning parameters provide with insightful ideas about

the amount of learning required. In particular, both under-training and over-training

the agent results in achieving worse results; there is a particular optimal value of the

parameters that can be found experimentally.

7.2 Future Work

As shown in Chapter 3, the research directions regarding the ad hoc team setting are

numerous. Since the methodology described covers several of these approaches, any

extensions in these research lines may actually be applicable to it. As far as the method-

ology itself is concerned, future research is encouraged along all components of the

strategy.

Since the design is generic enough, various ML algorithms may be tested. For

example, the policy selection could use any classifier as long as it is incremental. In

addition, the teammate modeling classifying task could also be done incrementally,

thus constantly improving the models and minimizing the number of runs that are

observed by the ad hoc agent. As far as the strategy construction task is concerned, it

would be interesting to test whether model-based approaches perform satisfactorily as

well. In addition, the merger of policies could be extended by using different merge

functions or even perform incremental merger.

Apart from the above extensions, it would certainly be interesting to evaluate the ad

hoc agent in a different testbed. Similar testbeds could even achieve different results,

depending on the difficulty of the task involved. Furthermore, the ad hoc agent’s per-

formance in slightly more complex testbeds could be evaluated. In particular, the task

could require further coordination among the agents. In such cases, a team Q-learning

algorithm such as the ones of subsection 3.2.3 could replace the simple Q-learning of

the ad hoc agent. The complexity issues that would arise could also be higher and thus

they should be handled using other techniques (e.g. pruning parts of the state space or

using an approximation).

7.2. Future Work 77

Furthermore, concerning the core algorithm of the project, it would be interesting

to extend the models presented so that they operate in real-time, without the need for

observation and processing phases. In general, performing the teammate modeling

task without any observed runs is very difficult. However, the number of runs required

could be drastically reduced if the agent was able to update the models created by the

classifier on-the-fly. In that case, the classifier should be able to work incrementally,

or the data instances should be limited so that the classifier can create a new model

efficiently. This could be accomplished by using a sliding window that keeps only few

instances according to their recency.

Moreover, determining whether an observed policy is sufficiently described by an

existing model or it should be individually modeled would be an interesting extension.

Concerning the processing phase, the training of the Q-learning algorithm could also

be done whilst playing, thus equally sharing any overhead. Conclusively, minimizing

the observation and processing phases comes down to performing the aforementioned

classifying and learning tasks on-the-fly. Concerning the time per timestep for the

agent could be limited, it would be interesting to explore the problem of optimally

allocating this time between the two tasks.

Finally, the extent to which the implementation presented is sufficient when all

agents are ad hoc learners could also be put under consideration. It is proven in Chap-

ter 6 that the agent is actually capable of achieving satisfactory results even when the

other agents are themselves ad hoc learners. However, the task once again could be

more difficult, possibly by enforcing certain characteristics (e.g. communication) to

the fixed agents. Thus, the ad hoc agent’s observing task would get more difficult

since he would also have to receive certain messages using different metrics, such as

confidence on his teammates.

Bibliography

[1] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):81–106,

March 1986.

[2] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd

Edition). Prentice Hall series in artificial intelligence. Prentice Hall, 2 edition,

December 2002.

[3] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein. Ad hoc autonomous agent

teams: Collaboration without pre-coordination. In Proceedings of the 24th Con-

ference on Artificial Intelligence, July 2010.

[4] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjou, and

S. Shimada. RoboCup Rescue: search and rescue in large-scale disasters as a

domain for autonomous agents research. In IEEE SMC’99 Conference Proceed-

ings. 1999 IEEE International Conference on Systems, Man, and Cybernetics

(Cat. No.99CH37028), volume 6, pages 739–743. IEEE, 1999.

[5] H. Kitano. Robocup rescue: a grand challenge for multi-agent systems. In Multi-

Agent Systems, 2000. Proceedings. Fourth International Conference on, pages 5

–12, 2000.

[6] Tom M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math,

1 edition, March 1997.

[7] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-

mation Theory, 28:129–137, 1982.

[8] S. B. Kotsiantis. Supervised machine learning: A review of classification tech-

niques. Informatica 31, 31:249–268, 2007.

[9] Ross J. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

79

80 Bibliography

[10] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan, 1962.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323(Oct):533–536+, 1986.

[12] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Mach. Learn.,

20(3):273–297, September 1995.

[13] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-Verlag

New York, Inc., New York, NY, USA, 1995.

[14] John C. Platt. Fast training of support vector machines using sequential minimal

optimization, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[15] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement

learning: a survey. J. Artif. Int. Res., 4(1):237–285, 1996.

[16] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[17] Ronald A. Howard. Dynamic Programming and Markov Process (Technology

Press Research Monographs). The MIT Press, first edition edition, June 1960.

[18] R. Bellman. A markovian decision process. Journal of Mathematics and Me-

chanics, 6(2):679–684, 1957.

[19] Andrew Barto and Michael Duff. Monte carlo matrix inversion and reinforcement

learning. In In Advances in Neural Information Processing Systems 6, pages 687–

694. Morgan Kaufmann, 1994.

[20] Richard S. Sutton. Learning to Predict by the Methods of Temporal Differences.

Machine Learning, 3:9–44, 1988.

[21] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist sys-

tems. Technical report, 1994.

[22] Christopher J. Watkins and Peter Dayan. Q-learning. Machine Learning,

8(3):279–292, May 1992.

Bibliography 81

[23] Richard S. Sutton. Integrated modeling and control based on reinforcement learn-

ing and dynamic programming. In Proceedings of the 1990 conference on Ad-

vances in neural information processing systems 3, NIPS-3, pages 471–478, San

Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[24] A. W. Moore and C. G. Atkeson. An investigation of memory-based function

approximators for learning control. Technical report, MIT Artificial Intelligence

Laboratory, Cambridge, MA, 1992.

[25] Samuel Barrett, Peter Stone, and Sarit Kraus. Empirical evaluation of ad hoc

teamwork in the pursuit domain. In Proc. of 11th Int. Conf. on Autonomous

Agents and Multiagent Systems (AAMAS 2011), May 2011.

[26] Katie Genter, Noa Agmon, and Peter Stone. Role selection in ad hoc teamwork.

In Proceedings of the 11th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2012), June 2012.

[27] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen. Online planning for ad hoc

autonomous agent teams. In Proceedings of the Twenty-Second international

joint conference on Artificial Intelligence - Volume Volume One, IJCAI’11, pages

439–445. AAAI Press, 2011.

[28] Stefano Albrecht and Subramanian Ramamoorthy. Comparative evaluation of

mal algorithms in a diverse set of ad hoc team problems. In Proceedings of The

11th International Conference on Autonomous Agents and Multiagent Systems -

Volume 1, AAMAS ’12. International Foundation for Autonomous Agents and

Multiagent Systems, 2012.

[29] Michael L. Littman. Value-function reinforcement learning in markov games.

Cognitive Systems Research, 2(1):55–66, 2001.

[30] Martin Lauer and Martin A. Riedmiller. An Algorithm for Distributed Reinforce-

ment Learning in Cooperative Multi-Agent Systems. In ICML ’00: Proceedings

of the Seventeenth International Conference on Machine Learning, pages 535–

542, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[31] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in

cooperative multiagent systems. In Proceedings of the fifteenth national/tenth

82 Bibliography

conference on Artificial intelligence/Innovative applications of artificial intelli-

gence, AAAI ’98/IAAI ’98, pages 746–752, Menlo Park, CA, USA, 1998. Amer-

ican Association for Artificial Intelligence.

[32] Junling Hu and Michael P. Wellman. Multiagent reinforcement learning: Theo-

retical framework and an algorithm. In In Proceedings of the Fifteenth Interna-

tional Conference on Machine Learning, pages 242–250, 1998.

[33] Junling Hu and Michael P. Wellman. Nash q-learning for general-sum stochastic

games. J. Mach. Learn. Res., 4:1039–1069, 2003.

[34] Samuel Barrett and Peter Stone. Ad hoc teamwork modeled with multi-armed

bandits: An extension to discounted infinite rewards. In Tenth International

Conference on Autonomous Agents and Multiagent Systems - Adaptive Learning

Agents Workshop (AAMAS - ALA), May 2011.

[35] Robin R. Murphy and J. Jake Sprouse. Strategies for searching an area with

semi-autonomous mobile robots. In In Proceedings of Robotics for Challenging

Environments, pages 15–21, 1996.

[36] Ryan Wegner and John Anderson. Balancing robotic teleoperation and auton-

omy for urban search and rescue environments. In Ahmed Tawfik and Scott

Goodwin, editors, Advances in Artificial Intelligence, volume 3060 of Lecture

Notes in Computer Science, pages 16–30. Springer Berlin / Heidelberg, 2004.

10.1007/978-3-540-24840-8 2.

[37] Peter Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science

and Cybernetics, 4(2):100–107, July 1968.

[38] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, December 1959.

[39] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. The WEKA data mining software: an update. SIGKDD

Explor. Newsl., 11(1):10–18, November 2009.

Appendix A

Simulator Specifics

A.1 Agent Strategy API

The simulator is implemented in a client-server architecture. Class Simulator imple-

ments the server of the system and actually is the first object created by main. Upon

initialization, the Simulator spawns Threads of type Agent. Every Agent instance is

actually a client that communicates with the server to receive information for the game

and send his moves (see Figure A.4). Thus, the Agent instantiates the actual agent that

must implement the AgentStrategy interface, shown in Figure A.1.

«interface»
agents::AgentStrategy

+ decideNextMove() : Action
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void
+ getType() : String
+ receiveActions(ArrayList<Action>) : void
+ receivePositions(ArrayList<Position>) : void

Figure A.1: The AgentStrategy interface, which is implemented by all active agents.

Any strategy implementing the AgentStrategy interface receives the field of play

as well as the agents’ positions at the start of each phase (getReadyForSearch and

getReadyForRescue). After that, for each timeslot, the agent receives all agents’ posi-

tions (receivePositions), decides for and returns his next action (decideNextMove)

and receives all agents’ actions (receiveActions) in case he wants to modify his

strategy.

83

84 Appendix A. Simulator Specifics

A.2 Agent Policy API

According to the problem specifics, the ad hoc agent should be able to handle strate-

gies as black box policies, either they are his strategies or his teammates’. Thus, any

policy should implement the AgentPolicy interface, shown in Figure A.2.

«interface»
agents::AgentPolicy

+ getActionSelector(ArrayList<Position>) : ActionSelector
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void

Figure A.2: The AgentPolicy interface, which is implemented by all agent policies.

The AgentPolicy interface is actually quite similar to the AgentStrategy interface.

AgentPolicy receives similar data and returns an ActionSelector instance, contain-

ing a probability distribution over the possible actions.

A.3 Simulator Configuration

All variables have default values in case they are not provided. In addition, their values

can be given as arguments from the command line. For any parameter, the respective

argument value of the command line has higher precedence than its value in the con-

figuration file, which in turn has higher precedence than its default value.

repetitions = 10

xsize = 12

ysize = 20

agents = 1 * AstarClose + 1 * AstarFar + 1 * S3 AdHocModelerWithRL

experiment = true

timestepDelay = 0.1325

enableGUI = true

loadTerrain = false

filename = field.txt

Figure A.3: Sample configuration file of the simulator.

agents are given in the form num * 1 [Srun] name where the optional argument

run denotes the run at which the agent enters the terrain. xsize and ysize de-

note the size of the terrain in case that no terrain from file is given. If a terrain

A.4. Class Diagrams 85

is given (loadTerrain = true), then the aforementioned parameters are overriden.

enableGUI determines whether the GUI is enabled. Finally, in experiment mode

(experiment = true), the simulator runs without GUI and no timestep delay and

outputs only the average and the standard deviation for the agents’ performance.

A.4 Class Diagrams

The client-server architecture of the simulator is shown in Figure A.4. The Simulator

(server) provides terrain information to the Agent (client), and the latter sends back an

action which is determined by the AgentStrategy interface.

simulator::Terrain

+ addAgent(Position) : void
+ addExitPoint(Position) : void
+ addHuman(Position) : void
+ draw() : void
+ getBoard() : Board
+ getCleanFieldPosition(int, int) : int
+ getField() : int[]
+ getFieldPosition(int, int) : int
+ getPositionsOf(int, int) : Vector<Position>
+ getSynchronizer() : Synchronizer
+ initialize(double) : void
+ loadTerrainFromFile(String) : void
+ main(String[]) : void
+ receiveFieldPosition(Position) : int
+ remove(Position) : void
+ startRescuePhase() : void
+ startSearchPhase() : void
+ Terrain(int, int, int, int)
+ Terrain(int, int, int, int, boolean, Board)
+ Terrain(int, int, int, int, boolean)
+ toString() : String
+ updateAgentPosition(Position, Action, int) : Position

simulator::FieldPosition

+ changeValue(int) : void
+ FieldPosition(int)
+ getCleanValue() : int
+ getGuiValue() : int
+ getRescueValue() : int
+ getSearchValue() : int
+ getValue() : int
+ setGuiValue(int) : void
+ setRescuePhase() : void
+ setSearchPhase() : void
+ setValue(int) : void
+ toString() : String

Thread

simulator::Simulator

+ allAgentsFoundExit() : boolean
+ allAgentsFoundHuman() : boolean
+ allExitFound() : boolean
+ allExitsFound() : boolean
+ allHumanFound() : boolean
+ allHumansFound() : boolean
+ createNewTerrain() : void
+ getActions() : ArrayList<Action>
+ getField() : int[]
+ getPositions() : ArrayList<Position>
+ getSynchronizer() : Synchronizer
+ main(String[]) : void
+ oneAgentFoundExit(int) : boolean
+ oneAgentFoundHuman(int) : boolean
+ run() : void
+ Simulator(int, int, int, int, HashMap<String,Integer>,

double, double, boolean, boolean, boolean, String)
+ update(int, int, Position) : void
+ updateAgentPosition(int, Action) : void

JFrame

gui::Board

+ Board(FieldPosition[][], int, int)
+ draw(int, int, int) : void
+ draw(int, int, int, int) : void
+ getSynchronizer() : Synchronizer
+ redraw(FieldPosition[][]) : void

gui::Synchronizer

+ check() : void
+ disable() : void
+ pause() : void
+ start() : void
+ step() : void
+ Synchronizer()

Thread

agents::Agent

+ Agent(int, int, String, Simulator, CyclicBarrier,
CyclicBarrier, int, int, boolean, boolean, int)

+ run() : void
+ runTimestep() : void
+ setStartingTimestep(int) : void

«interface»
agents::AgentStrategy

+ decideNextMove() : Action
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void
+ getType() : String
+ receiveActions(ArrayList<Action>) : void
+ receivePositions(ArrayList<Position>) : void

-field

-terrain

-board -synchronizer

-simulator

-strategy

Figure A.4: Class diagram of the simulator. Class Simulator (server) sends messages back

and forth with instances of type Agent (client).

86 Appendix A. Simulator Specifics

A high-level overview of the various interfaces is shiown in Figure A.5. As already

mentioned, the AgentStrategy interface has to be implemented by any agent that

participates in a run. In addition, the AgentPolicy interface is implemented by any

policy, i.e. by any model that can be used as a black box receiving system state and

outputting an action. Finally, the BayesPolicy interface is implemented by policies

that are provided to the ad hoc agent so that he can use the Naı̈ve Bayes classifier in

order to select among them.

Thread

agents::Agent

+ Agent(int, int, String, Simulator, CyclicBarrier,
CyclicBarrier, int, int, boolean, boolean, int)

+ run() : void
+ runTimestep() : void
+ setStartingTimestep(int) : void

Cloneable

agents::BayesPolicy

+ BayesPolicy()
+ BayesPolicy(double)
+ clone() : Object
+ getMyId() : int
+ getType() : String
+ setMyId(int) : void
+ setNormalizedP_actions_model(double) : void
+ updateP_actions_model(ArrayList<Position>, Action) : void

«property get»
+ getP_actions_model() : double
+ getP_model() : double

«interface»
agents::AgentPolicy

+ getActionSelector(ArrayList<Position>) : ActionSelector
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void

«interface»
agents::AgentStrategy

+ decideNextMove() : Action
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void
+ getType() : String
+ receiveActions(ArrayList<Action>) : void
+ receivePositions(ArrayList<Position>) : void

Astar::AbstractAstar

+ AbstractAstar(int, int, int, double)
+ AbstractAstar(int, int, int)
+ clone() : Object
+ decideNextMove() : Action
+ findAllAstar(Position, int[][]) : HashMap<Position, Action>
+ getActionSelector(ArrayList<Position>) : ActionSelector
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void
+ receiveActions(ArrayList<Action>) : void
+ receivePositions(ArrayList<Position>) : void

AdHoc::AdHoc

+ AdHoc(int, int, int, int, String, ArrayList<BayesPolicy>)
+ decideNextMove() : Action
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void
+ getType() : String
+ receiveActions(ArrayList<Action>) : void
+ receivePositions(ArrayList<Position>) : void

-strategy

Figure A.5: Class diagram of the agent interfaces. Any agent strategy (such as AdHoc or

AbstractAstar) implements the AgentStrategy interface, while any agent policy (such as

AbstractAstar) implements the AgentPolicy interface.

A.4. Class Diagrams 87

Finally, Figure A.6 illustrates the basic architecture of an ad hoc team agent. The agent

keeps one TeammatePolicy instance for each of his teammates and one MyPolicy

instance for himself. Thus, each TeammatePolicy instance applies the Naı̈ve Bayes

classifier to determine which model is a better fit for the respective teammate. Upon

determining the teammates’ models, the ad hoc agent selects one of his own models,

which are kept in the MyPolicy instance.

Cloneable

agents::BayesPolicy

+ BayesPolicy()
+ BayesPolicy(double)
+ clone() : Object
+ getMyId() : int
+ getType() : String
+ setMyId(int) : void
+ setNormalizedP_actions_model(double) : void
+ updateP_actions_model(ArrayList<Position>, Action) :

void

«property get»
+ getP_actions_model() : double
+ getP_model() : double

AdHoc::AdHoc

+ AdHoc(int, int, int, int, String,
ArrayList<BayesPolicy>)

+ decideNextMove() : Action
+ getReady() : void
+ getReadyForRescue(int[][], ArrayList<Position>) :

void
+ getReadyForSearch(int[][], ArrayList<Position>) :

void
+ getType() : String
+ receiveActions(ArrayList<Action>) : void
+ receivePositions(ArrayList<Position>) : void

AdHoc::BasicPolicy

+ BasicPolicy(int, int, int, int,
ArrayList<BayesPolicy>,
ArrayList<ArrayList<BayesPolicy>>)

AdHoc::MyPolicy

+ getAction(ArrayList<String>, ArrayList<Position>) :
ActionSelector

+ getReadyForRescue(int[][], ArrayList<Position>) : void
+ getReadyForSearch(int[][], ArrayList<Position>) : void

AdHoc::TeammatePolicy

+ decideModel(ArrayList<Position>, ArrayList<Action>)
: HashMap<String, Double>

+ getReadyForRescue(int[][], ArrayList<Position>) :
void

+ getReadyForSearch(int[][], ArrayList<Position>) :
void

+ TeammatePolicy(int, ArrayList<BayesPolicy>)

AdHoc::RLPolicy

+ getReadyForRescue(int[][], ArrayList<Position>) :
void

+ getReadyForSearch(int[][], ArrayList<Position>) :
void

+ RLPolicy(int, int, int, int, ArrayList<BayesPolicy>,
ArrayList<ArrayList<BayesPolicy>>)

-me1..

1..

Figure A.6: Class diagram of the ad hoc agent. The agent creates a TeammatePolicy instance

for any of his teammates and a MyPolicy instance for himself.

Conclusively, note that the above class diagrams do not exhaustively cover neither the

simulator nor the agents’ functionality. However, they provide with an interesting high

level view of the system, which may be useful as a model for future extensions.

Appendix B

A* Agent Specifics

The pseudocode of the A* algorithm for the SAR terrain is shown in Figure B.1.

Function Astar(Cell startingCell, Cell goalCell)

Variables:

LIST OPEN LIST, CLOSED LIST, FINAL LIST

OPEN LIST.add(startingCell)

while ((goalCell not in CLOSED LIST) and (OPEN LIST not empty))

currentCell = cell with minimum F from the OPEN LIST

OPEN LIST.remove(currentCell)

CLOSED LIST.add(currentCell)

for (neighborCell : neighbors(currentCell))

if (neighborCell not in CLOSED LIST)

if (neighborCell not in OPEN LIST)

OPEN LIST.add(neighborCell)

neighborCell.setParent(currentCell)

neighborCell.calculateFGH(goalCell)

else if (neighborCell.G > currentCell.G + 1)

neighborCell.setParent(currentCell)

neighborCell.calculateFGH(goalCell)

cell = goalCell

while (cell != startingPosition)

FINAL LIST.add(cell)

cell = cell.getParent()

return FINAL LIST.reverse()

Figure B.1: Pseudocode of the A* algorithm for the SAR terrain.

89

90 Appendix B. A* Agent Specifics

The class Cell represents a position on the terrain and is defined in Figure B.2.

Class Cell

Variables:

numeric: F, G, H

Cell: parent

Function setParent(Cell parentCell)

parent = parentCell

Function calculateFGH(Cell goalCell)

G = parent.G + 1

H = distance of this cell from goalCell

F = G + H

Figure B.2: Pseudocode of the object Cell that represents a position of the terrain.

For each cell, the heuristic value F is computed as the sum of the (Manhattan) distance

of the cell from the starting cell G and the (Manhattan) distance of the cell from the

goal cell H. The A* function receives two cells, the agent’s position and the goal cell.

The OPEN LIST contains the cells that are not yet explored, whereas the CLOSED LIST

contains the cells that have already been explored. For each iteration, the algorithm

adds the cell with the minimum F value to the CLOSED LIST, named the current cell.

Then it iterates through its neigboring cells, setting their parent attribute to the current

cell, calculating their heuristics values, and adding them to the OPEN LIST. In addi-

tion, if a cell is found to be already checked (hence its heuristic values are already

computed), it is still checked to determine if selecting the current cell as its new parent

would result in better heuristic values. Thus, it is certain that the algorithm finds an

optimal path. The algorithm iterates until the goal cell is added to the CLOSED LIST.

Finally, the algorithm starts from the goal cell and iterates until it finds the starting cell,

by selecting each time the parent of the cell that is checked. The cell iteration is saved

in a list, thus the resulting path is the reverse of the list.

Appendix C

Experiment Results

C.1 Known Teammate Models

C.1.1 Using Modeled Policy

Tables C.1, C.2, and C.3 contain the mean number of timesteps for 10 repetitions of

10 different terrains, concerning terrain sizes 6×10, 9×15, and 12×20 respectively.

There are 4 agents per team and 4 possible policies. Team A is optimal, whereas

teams B and C each have an agent that plays optimally 75% and 65% of the moves

respectively. Team D has 1 ad hoc agent that determines which known policy to use in

accordance with his teammates’ policies, while team E has 2 ad hoc agents.

Table C.1: Mean number of timesteps testing the policy selection component of the ad hoc

agent (teams D and E with 1 and 2 ad hoc agents respectively) versus an optimal (team A) and

two suboptimal teams (teams B and C), in terrain size 6×10.

Mean Number of Timesteps for Teams

Team A Team B Team C Team D Team E

1 8.0±0.0 10.8±2.2 14.2±9.9 9.6±0.8 9.0±1.3

2 12.0±0.0 14.0±1.8 16.4±4.3 12.8±1.0 14.8±3.0

3 8.0±0.0 9.9±1.6 12.4±5.1 8.0±0.0 9.6±1.5

4 18.0±0.0 20.2±2.3 20.6±4.7 18.0±0.0 19.2±2.6

5 18.0±0.0 22.9±4.1 37.3±20.3 18.7±0.5 21.6±5.0

6 10.0±0.0 20.3±9.4 20.2±7.3 11.2±1.0 12.2±2.1Te
rr

ai
ns

7 24.0±0.0 28.4±4.7 30.9±6.3 24.0±0.0 25.4±1.6

8 12.0±0.0 16.0±3.8 26.9±14.8 13.0±1.0 15.4±3.5

9 22.0±0.0 23.0±1.3 22.6±1.3 22.0±0.0 22.7±1.4

10 14.0±0.0 14.3±0.9 14.2±0.6 15.2±1.0 15.2±1.6

Sum 146.0±0.0 179.8±32.0 215.7±74.6 152.5±5.2 165.1±23.5

91

92 Appendix C. Experiment Results

Table C.2: Mean number of timesteps testing the policy selection component of the ad hoc

agent (teams D and E with 1 and 2 ad hoc agents respectively) versus an optimal (team A) and

two suboptimal teams (teams B and C), in terrain size 9×15.

Mean Number of Timesteps for Teams

Team A Team B Team C Team D Team E

1 24.0±0.0 35.0±6.1 50.0±16.3 24.4±0.8 26.2±2.1

2 28.0±0.0 36.2±8.0 51.2±16.8 28.6±0.9 29.8±1.4

3 22.0±0.0 28.4±3.9 38.2±7.8 22.0±0.0 22.6±1.3

4 34.0±0.0 42.4±9.5 48.2±12.0 34.6±0.5 35.3±1.5

5 16.0±0.0 19.4±7.3 19.5±2.5 16.0±0.0 17.4±1.6

6 16.0±0.0 23.4±10.7 26.6±9.6 17.0±1.0 17.4±1.8Te
rr

ai
ns

7 32.0±0.0 40.0±5.9 52.0±10.3 32.5±0.5 34.2±2.5

8 18.0±0.0 20.9±3.4 23.8±6.8 18.5±0.5 20.8±3.1

9 20.0±0.0 32.4±8.2 39.5±23.6 20.6±0.9 22.8±2.9

10 22.0±0.0 23.7±2.7 26.4±6.7 22.0±0.0 23.0±1.3

Sum 232.0±0.0 301.8±65.7 375.4±112.3 236.2±5.1 249.5±19.4

Table C.3: Mean number of timesteps testing the policy selection component of the ad hoc

agent (teams D and E with 1 and 2 ad hoc agents respectively) versus an optimal (team A) and

two suboptimal teams (teams B and C), in terrain size 12×20.

Mean Number of Timesteps for Teams

Team A Team B Team C Team D Team E

1 32.0±0.0 40.3±9.2 41.4±8.7 33.2±1.0 34.9±4.0

2 16.0±0.0 20.6±1.9 31.7±17.7 16.5±0.5 18.4±5.0

3 44.0±0.0 56.3±7.8 64.5±11.1 45.6±0.8 46.0±2.0

4 48.0±0.0 61.6±8.3 103.2±23.5 48.6±0.5 48.9±1.2

5 16.0±0.0 18.3±2.0 19.3±4.0 16.0±0.0 16.1±0.3

6 40.0±0.0 46.8±8.1 55.8±13.4 40.0±0.0 41.2±2.0Te
rr

ai
ns

7 34.0±0.0 49.6±8.1 69.9±11.3 36.0±2.0 35.4±2.2

8 36.0±0.0 41.8±5.7 51.4±8.9 36.0±0.0 36.4±0.8

9 24.0±0.0 31.2±4.5 41.9±9.7 25.4±0.9 26.6±2.8

10 30.0±0.0 35.0±5.3 38.9±11.9 30.4±0.5 31.7±2.0

Sum 320.0±0.0 401.5±60.9 518.0±120.2 327.7±6.2 335.6±22.3

C.1. Known Teammate Models 93

C.1.2 Constructing Strategy

C.1.2.1 Efficiency Tests

The mean time per timestep in milliseconds for 3 repetitions on 3 terrains is shown in

Tables C.4, C.5, and C.6 for the two strategy construction policies, concerning terrain

sizes 6× 10, 9× 15, and 12× 20 respectively. There are 2 possible policies. The ad

hoc agent of team F constructs a policy for each possible combination, whereas the

agent of team G constructs merger policy based on the 2 known models.

Table C.4: Mean time per timestep testing the efficiency of the strategy construction component

that constructs an answer policy for each combination of teammate policies (team F) versus the

one that merges the distinct answer policies, in terrain size 6×10.

Mean Time per Timestep for Teams of

2 agents 4 agents 6 agents 8 agents

Team F Team G Team F Team G Team F Team G Team F Team G

1 50.0±0.0 60.3±7.6 172.3±16.1 64.4±6.3 736.5±85.6 89.9±9.4 4047.0±429.7 175.6±21.1

2 43.3±2.5 54.3±4.2 165.6±14.9 54.6±1.8 903.5±81.0 72.6±1.0 3680.5±317.4 159.5±15.4

Te
rr

ai
ns

3 39.0±1.7 58.3±4.8 184.5±10.8 63.8±5.1 904.0±5.0 81.2±5.4 3730.7±17.1 131.5±1.1

Avg 44.1±1.4 57.6±5.5 174.1±13.9 61.0±4.4 848.0±57.2 81.2±5.3 3819.4±254.8 155.5±12.6

Table C.5: Mean time per timestep testing the efficiency of the strategy construction component

that constructs an answer policy for each combination of teammate policies (team F) versus the

one that merges the distinct answer policies, in terrain size 9×15.

Mean Time per Timestep for Teams of

2 agents 4 agents 6 agents 8 agents

Team F Team G Team F Team G Team F Team G Team F Team G

1 51.7±0.8 69.6±3.1 200.6±3.0 71.8±1.5 977.5±123.5 93.3±1.8 4800.5±9.1 178.6±2.0

2 59.8±1.1 82.7±2.5 251.7±0.8 90.9±0.7 1437.9±7.9 118.3±1.4 5899.9±9.9 235.3±2.9

Te
rr

ai
ns

3 53.0±3.4 72.1±5.9 235.0±13.2 84.6±3.2 1285.7±58.5 106.5±4.9 5419.7±245.8 192.9±16.0

Avg 54.8±1.8 74.8±3.8 229.1±5.7 82.4±1.8 1233.7±63.3 106.0±2.7 5373.4±88.3 202.3±6.9

Table C.6: Mean time per timestep testing the efficiency of the strategy construction component

that constructs an answer policy for each combination of teammate policies (team F) versus the

one that merges the distinct answer policies, in terrain size 12×20.

Mean Time per Timestep for Teams of

2 agents 4 agents 6 agents 8 agents

Team F Team G Team F Team G Team F Team G Team F Team G

1 68.8±1.0 91.5±5.5 300.7±4.7 105.4±2.3 1759.8±7.5 126.8±2.4 7867.9±515.4 210.7±1.4

2 63.4±0.9 83.1±0.5 273.3±6.7 93.8±1.4 1509.1±32.5 108.8±1.0 6840.8±283.1 180.2±3.3

Te
rr

ai
ns

3 79.6±0.7 105.1±3.3 450.2±13.9 120.9±0.6 1989.4±8.0 145.1±3.2 9425.7±531.5 250.5±7.6

Avg 70.6±0.9 93.2±3.1 341.4±8.5 106.7±1.4 1752.7±16.0 126.9±2.2 8044.8±443.4 213.8±4.1

94 Appendix C. Experiment Results

C.1.2.2 Effectiveness Tests

Tables C.7, C.8, and C.9 contain the mean number of timesteps for 10 repetitions of 10

terrains for terrain sizes 6×10, 9×15, and 12×20 respectively. There are 4 agents per

team and 2 possible policies. Team A is optimal, whereas team D has an ad hoc agent

that plays a known policy. Teams F and G each have an ad hoc agent that constructs

a policy for each possible combination of teammates’ policies or constructs a merger

policy respectively. Team H has 2 agents that use merger strategy construction.

Table C.7: Mean number of timesteps testing the merger strategy construction component

(teams G and H with 1 and 2 ad hoc agents respectively) versus its naı̈ve counterpart (team F),

an optimal (team A) and two suboptimal teams (teams B and C), in terrain size 6×10.

Mean Number of Timesteps for Teams

Team A Team D Team F Team G Team H

1 8.0±0.0 9.2±1.0 8.8±1.0 9.0±1.0 10.0±3.2

2 12.0±0.0 13.0±1.0 13.6±0.8 13.6±0.8 14.7±2.1

3 8.0±0.0 8.0±0.0 8.0±0.0 8.0±0.0 10.0±3.6

4 18.0±0.0 18.0±0.0 18.0±0.0 18.0±0.0 18.8±0.9

5 18.0±0.0 18.4±0.5 19.0±1.3 18.7±0.8 20.7±4.0

6 10.0±0.0 11.2±1.0 11.2±1.0 11.0±1.0 11.1±1.3Te
rr

ai
ns

7 24.0±0.0 24.0±0.0 24.0±0.0 24.0±0.0 24.8±1.3

8 12.0±0.0 13.0±1.0 13.2±1.0 13.2±1.0 13.8±1.4

9 22.0±0.0 22.0±0.0 22.0±0.0 22.0±0.0 22.8±1.0

10 14.0±0.0 15.0±1.0 14.4±0.8 15.8±1.7 16.4±2.7

Sum 146.0±0.0 151.8±5.4 152.2±5.8 153.3±6.2 163.1±21.4

Table C.8: Mean number of timesteps testing the merger strategy construction component

(teams G and H with 1 and 2 ad hoc agents respectively) versus its naı̈ve counterpart (team F),

an optimal (team A) and two suboptimal teams (teams B and C), in terrain size 9×15.

Mean Number of Timesteps for Teams

Team A Team D Team F Team G Team H

1 24.0±0.0 24.6±0.9 24.2±0.6 24.2±0.6 25.0±1.0

2 28.0±0.0 28.6±0.9 31.2±2.2 31.2±2.4 32.8±2.9

3 22.0±0.0 22.0±0.0 22.4±0.8 22.6±0.9 23.2±1.3

4 34.0±0.0 34.3±0.5 37.2±2.0 38.0±4.0 38.2±2.7

5 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 17.1±0.9

6 16.0±0.0 17.2±1.0 17.8±0.6 17.6±0.8 18.0±2.2Te
rr

ai
ns

7 32.0±0.0 32.5±0.5 34.3±1.3 33.4±1.2 35.9±2.0

8 18.0±0.0 18.6±0.5 19.8±1.3 20.5±1.0 21.6±2.3

9 20.0±0.0 20.8±1.0 20.4±0.8 21.4±1.3 23.2±1.6

10 22.0±0.0 22.0±0.0 22.0±0.0 22.0±0.0 23.5±1.5

Sum 232.0±0.0 236.6±5.2 245.3±9.7 246.9±12.2 258.5±18.5

C.2. Unknown Teammate Models 95

Table C.9: Mean number of timesteps testing the merger strategy construction component

(teams G and H with 1 and 2 ad hoc agents respectively) versus its naı̈ve counterpart (team F),

an optimal (team A) and two suboptimal teams (teams B and C), in terrain size 12×20.

Mean Number of Timesteps for Teams

Team A Team D Team F Team G Team H

1 32.0±0.0 32.6±0.9 32.2±0.6 32.2±0.6 34.0±1.5

2 16.0±0.0 16.6±0.5 17.2±0.9 16.9±0.8 18.8±4.2

3 44.0±0.0 44.8±1.0 45.0±1.8 45.2±1.3 46.2±2.1

4 48.0±0.0 48.7±0.5 48.8±0.9 49.1±0.8 49.8±1.4

5 16.0±0.0 16.0±0.0 16.0±0.0 16.0±0.0 17.6±3.5

6 40.0±0.0 40.0±0.0 40.2±0.6 40.2±0.6 40.2±0.6Te
rr

ai
ns

7 34.0±0.0 36.0±2.0 34.2±0.6 34.0±0.0 36.0±2.0

8 36.0±0.0 36.0±0.0 36.2±0.6 36.2±0.6 37.4±3.6

9 24.0±0.0 25.6±0.8 24.4±0.8 24.6±0.9 27.6±5.2

10 30.0±0.0 30.6±0.5 33.7±1.3 33.7±1.6 34.3±2.2

Sum 320.0±0.0 326.9±6.1 327.9±8.1 328.1±7.3 341.9±26.3

C.2 Unknown Teammate Models
Tables C.10, C.11, and C.12 present the number of timesteps for 10 repetitions of 10

terrains of sizes 6×10, 9×15, and 12×20 respectively. There are 4 agents per team

and 2 possible policies. As before, team A is optimal, whereas teams B and C each

have an agent that is 75% and 65% optimal respectively. Team D has one ad hoc agent

that fully models his teammates, while team E has two ad hoc agents.

Table C.10: Mean number of timesteps testing the teammate modeling component of the ad

hoc agent (teams I and J with 1 and 2 ad hoc agents respectively) versus an optimal (team A)

and two suboptimal teams (teams B and C), in terrain size 6×10.

Mean Number of Timesteps for Teams

Team A Team B Team C Team I Team J

1 8.0±0.0 11.8±3.7 13.7±6.8 9.2±1.0 12.0±5.8

2 12.0±0.0 13.6±1.5 19.2±7.0 12.6±0.9 14.2±3.1

3 8.0±0.0 9.7±2.2 12.4±5.1 8.3±0.6 9.0±3.0

4 18.0±0.0 18.7±1.1 22.1±5.8 18.0±0.0 21.0±3.7

5 18.0±0.0 22.7±2.9 29.3±11.1 18.0±0.0 19.7±1.7

6 10.0±0.0 13.4±3.6 18.0±7.6 10.8±1.0 11.4±1.8Te
rr

ai
ns

7 24.0±0.0 26.6±3.7 34.2±6.6 25.5±0.5 30.4±7.4

8 12.0±0.0 14.0±1.8 22.4±6.2 14.0±0.9 14.5±3.2

9 22.0±0.0 23.8±2.9 25.5±3.1 22.0±0.0 26.3±3.3

10 14.0±0.0 14.8±1.0 16.4±5.1 17.0±0.0 22.1±6.9

Sum 146.0±0.0 169.1±24.2 213.2±64.5 155.4±4.9 180.6±40.0

96 Appendix C. Experiment Results

Table C.11: Mean number of timesteps testing the teammate modeling component of the ad

hoc agent (teams I and J with 1 and 2 ad hoc agents respectively) versus an optimal (team A)

and two suboptimal teams (teams B and C), in terrain size 9×15.

Mean Number of Timesteps for Teams

Team A Team B Team C Team I Team J

1 24.0±0.0 38.6±9.8 44.7±24.6 22.0±0.0 25.1±2.3

2 28.0±0.0 37.0±8.0 42.0±10.4 34.9±0.3 34.3±4.3

3 22.0±0.0 32.9±9.2 38.9±12.8 21.4±0.5 34.7±20.9

4 34.0±0.0 40.3±4.0 52.8±12.8 34.0±0.0 34.4±0.8

5 16.0±0.0 17.0±1.3 20.6±2.7 16.0±0.0 18.2±3.3

6 16.0±0.0 20.0±5.1 29.2±8.2 19.6±2.2 18.4±2.3Te
rr

ai
ns

7 32.0±0.0 37.9±2.6 51.6±12.6 35.0±1.0 37.2±2.1

8 18.0±0.0 19.6±2.1 21.2±5.0 18.2±0.6 20.1±4.5

9 20.0±0.0 30.9±7.5 38.6±11.4 24.2±0.6 21.8±2.3

10 22.0±0.0 24.0±1.5 30.8±12.4 30.9±1.6 25.8±2.4

Sum 232.0±0.0 298.2±51.0 370.4±113.0 256.2±6.7 270.0±45.3

Table C.12: Mean number of timesteps testing the teammate modeling component of the ad

hoc agent (teams I and J with 1 and 2 ad hoc agents respectively) versus an optimal (team A)

and two suboptimal teams (teams B and C), in terrain size 12×20.

Mean Number of Timesteps for Teams

Team A Team B Team C Team I Team J

1 32.0±0.0 39.7±4.2 42.6±9.0 32.0±0.0 37.4±3.2

2 16.0±0.0 20.0±4.9 33.0±11.3 18.7±1.6 16.6±0.9

3 44.0±0.0 58.1±6.2 73.3±13.9 46.6±1.8 48.9±2.6

4 48.0±0.0 64.6±7.7 84.5±22.5 48.0±0.0 50.3±3.7

5 16.0±0.0 17.0±1.0 20.4±4.0 17.8±1.7 23.0±8.3

6 40.0±0.0 48.8±10.2 61.8±12.0 43.6±2.9 42.2±4.7Te
rr

ai
ns

7 34.0±0.0 48.8±14.0 72.1±19.4 34.4±0.8 35.6±2.3

8 36.0±0.0 45.0±8.3 52.4±18.7 36.8±1.0 38.8±4.7

9 24.0±0.0 32.7±6.0 37.3±7.0 24.0±0.0 26.2±2.9

10 30.0±0.0 37.4±4.4 43.2±10.8 32.0±0.0 35.3±4.5

Sum 320.0±0.0 412.1±66.9 520.6±128.6 333.9±9.7 354.3±37.8

C.3 Learning Sensitivity Analysis
Team IK,L has an ad hoc agent that models his teammates upon observing K runs and

constructs answer policies by simulating L runs. Concerning 2 agents with 2 teammate

models, the results for 10 repetitions over 10 terrains are shown in Tables C.13, C.14,

and C.15 for terrains sizes 6×10, 9×15, and 12×20 respectively.

C.3. Learning Sensitivity Analysis 97

Ta
bl

e
C

.1
3:

M
ea

n
nu

m
be

r
of

tim
es

te
ps

te
st

in
g

th
e

se
ns

iti
vi

ty
of

th
e

ad
ho

c
ag

en
t’s

le
ar

ni
ng

pa
ra

m
et

er
s.

I K
,L

co
nt

ai
ns

an
ad

ho
c

ag
en

tt
ha

ti
s

gi
ve

n
K

ob
se

rv
ed

ru
ns

to
m

od
el

hi
s

te
am

m
at

es
an

d
L

si
m

ul
at

ed
ru

ns
to

co
ns

tr
uc

th
is

st
ra

te
gy

,i
n

te
rr

ai
n

si
ze

6
×

10
.

M
ea

n
N

um
be

ro
fT

im
es

te
ps

fo
rT

ea
m

s

Te
am

I 3
,3

00
Te

am
I 3
,5

00
Te

am
I 3
,7

00
Te

am
I 5
,3

00
Te

am
I 5
,5

00
Te

am
I 5
,7

00
Te

am
I 7
,3

00
Te

am
I 7
,5

00
Te

am
I 7
,7

00

1
9.

8±
1.

0
10

.4
±

1.
0

10
.2
±

1.
3

10
.6
±

0.
8

11
.4
±

0.
7

9.
8±

0.
9

12
.5
±

0.
8

10
.6
±

1.
5

9.
4±

1.
0

2
15

.4
±

1.
5

15
.2
±

1.
0

19
.3
±

1.
2

14
.2
±

1.
9

14
.6
±

1.
4

17
.1
±

0.
7

15
.8
±

0.
8

15
.4
±

0.
9

19
.0
±

0.
4

3
9.

3±
0.

8
10

.6
±

0.
7

9.
7±

0.
3

8.
6±

0.
7

9.
8±

0.
3

9.
4±

0.
7

8.
6±

0.
7

9.
0±

0.
0

9.
9±

1.
0

4
21

.0
±

0.
0

19
.7
±

0.
8

19
.8
±

0.
6

20
.3
±

0.
8

19
.5
±

0.
9

18
.8
±

0.
4

20
.7
±

0.
7

19
.8
±

0.
3

19
.4
±

0.
8

5
21

.3
±

0.
8

20
.9
±

0.
1

19
.4
±

1.
1

20
.8
±

0.
6

19
.8
±

0.
6

21
.0
±

0.
9

19
.6
±

0.
7

18
.8
±

0.
6

20
.2
±

0.
6

6
11

.0
±

0.
0

12
.9
±

0.
8

12
.4
±

0.
9

12
.0
±

0.
9

12
.4
±

1.
6

12
.4
±

0.
8

11
.6
±

0.
8

14
.6
±

1.
0

13
.2
±

0.
8

Terrains

7
25

.3
±

1.
1

26
.8
±

0.
7

25
.5
±

0.
7

27
.0
±

0.
0

25
.5
±

0.
9

25
.0
±

0.
0

25
.8
±

0.
3

25
.0
±

0.
0

26
.3
±

0.
3

8
14

.6
±

1.
4

14
.0
±

0.
8

15
.1
±

2.
2

14
.4
±

1.
0

15
.0
±

1.
7

14
.8
±

1.
7

17
.2
±

1.
2

14
.8
±

0.
9

17
.4
±

1.
0

9
23

.0
±

0.
0

24
.4
±

0.
3

24
.0
±

0.
0

23
.3
±

0.
5

26
.3
±

0.
5

29
.3
±

0.
6

22
.6
±

0.
8

23
.8
±

0.
7

23
.2
±

0.
7

10
15

.8
±

0.
4

20
.7
±

0.
3

21
.5
±

3.
7

17
.6
±

0.
5

19
.0
±

0.
5

17
.4
±

0.
5

19
.2
±

2.
0

17
.0
±

0.
0

18
.6
±

1.
2

Su
m

16
6.

5±
6.

9
17

5.
6±

6.
4

17
6.

9±
12

.0
16

8.
8±

7.
7

17
3.

3±
9.

0
17

5.
0±

7.
2

17
3.

6±
8.

8
16

8.
8±

6.
0

17
6.

6±
7.

7

98 Appendix C. Experiment Results

Table
C

.14:
M

ean
num

ber
of

tim
esteps

testing
the

sensitivity
of

the
ad

hoc
agent’s

learning
param

eters.
IK

,L
contains

an
ad

hoc

agentthatis
given

K
observed

runs
to

m
odelhis

team
m

ates
and

L
sim

ulated
runs

to
constructhis

strategy,in
terrain

size
9×

15.

M
ean

N
um

berofTim
esteps

forTeam
s

Team
I3,300

Team
I3,500

Team
I3,700

Team
I5
,300

Team
I5,500

Team
I5,700

Team
I7,300

Team
I7
,500

Team
I7,700

1
23.4±

0.7
33.2±

0.2
24.8±

0.7
23.8±

0.5
24.0±

0.0
24.0±

0.0
26.6±

0.4
27.2±

1.0
24.4±

3.9

2
34.2±

2.7
34.4±

0.6
40.8±

5.4
31.2±

4.8
35.8±

1.9
43.4±

1.0
29.4±

2.2
35.2±

3.2
43.9±

2.5

3
22.4±

0.8
23.6±

0.8
24.2±

1.2
24.2±

0.7
22.8±

1.3
23.6±

1.0
21.3±

0.7
24.2±

0.6
21.6±

0.6

4
39.4±

1.3
37.2±

2.4
38.0±

2.0
39.2±

1.3
37.0±

0.6
38.9±

0.7
38.2±

1.1
37.0±

2.0
36.6±

1.7

5
18.2±

0.7
18.2±

0.4
18.6±

0.6
17.2±

0.8
19.2±

0.4
19.9±

0.1
18.8±

0.3
17.6±

0.5
18.0±

0.0

6
18.4±

0.9
19.4±

1.5
17.4±

0.9
18.8±

0.9
18.0±

0.8
19.4±

0.9
21.4±

1.0
18.6±

1.0
19.4±

1.0

Terrains

7
37.7±

1.3
35.0±

1.5
34.0±

0.0
33.8±

0.3
33.4±

1.7
35.8±

0.6
34.6±

1.0
33.8±

0.6
37.4±

0.8

8
20.6±

0.5
19.0±

1.6
20.8±

1.0
22.6±

0.6
19.8±

0.6
21.4±

0.7
22.1±

1.0
21.2±

1.4
20.8±

0.4

9
23.4±

1.2
21.2±

1.3
27.2±

1.3
23.8±

1.4
24.0±

1.0
24.6±

2.0
23.6±

1.3
22.8±

1.0
22.2±

1.6

10
25.5±

0.7
32.4±

0.4
25.5±

0.5
25.6±

1.4
23.0±

0.0
25.3±

0.7
26.1±

0.7
24.3±

0.4
26.4±

1.1

Sum
263.2±

10.8
273.6±

10.6
271.3±

13.6
260.2±

12.7
257.0±

8.3
276.3±

7.6
262.1±

9.5
261.9±

11.7
270.7±

13.6

C.3. Learning Sensitivity Analysis 99

Ta
bl

e
C

.1
5:

M
ea

n
nu

m
be

r
of

tim
es

te
ps

te
st

in
g

th
e

se
ns

iti
vi

ty
of

th
e

ad
ho

c
ag

en
t’s

le
ar

ni
ng

pa
ra

m
et

er
s.

I K
,L

co
nt

ai
ns

an
ad

ho
c

ag
en

tt
ha

ti
s

gi
ve

n
K

ob
se

rv
ed

ru
ns

to
m

od
el

hi
s

te
am

m
at

es
an

d
L

si
m

ul
at

ed
ru

ns
to

co
ns

tr
uc

th
is

st
ra

te
gy

,i
n

te
rr

ai
n

si
ze

12
×

20
.

M
ea

n
N

um
be

ro
fT

im
es

te
ps

fo
rT

ea
m

s

Te
am

I 3
,3

00
Te

am
I 3
,5

00
Te

am
I 3
,7

00
Te

am
I 5
,3

00
Te

am
I 5
,5

00
Te

am
I 5
,7

00
Te

am
I 7
,3

00
Te

am
I 7
,5

00
Te

am
I 7
,7

00

1
34

.2
±

2.
1

39
.6
±

0.
4

38
.8
±

2.
1

39
.0
±

0.
0

35
.3
±

0.
6

34
.2
±

0.
9

36
.2
±

0.
2

35
.0
±

0.
0

36
.2
±

0.
6

2
18

.8
±

0.
4

18
.8
±

0.
7

20
.8
±

1.
7

20
.8
±

0.
8

19
.0
±

0.
9

21
.0
±

0.
0

21
.2
±

0.
9

21
.4
±

0.
8

18
.6
±

0.
5

3
52

.7
±

5.
5

49
.0
±

2.
8

50
.0
±

0.
0

53
.6
±

1.
4

52
.6
±

0.
9

47
.8
±

1.
2

51
.8
±

3.
7

45
.6
±

1.
3

45
.2
±

0.
8

4
55

.1
±

2.
6

50
.4
±

0.
6

52
.0
±

0.
0

53
.6
±

2.
3

52
.2
±

0.
8

49
.4
±

0.
7

50
.4
±

0.
9

53
.1
±

0.
7

50
.6
±

1.
5

5
25

.0
±

0.
0

19
.1
±

1.
3

20
.8
±

0.
8

18
.6
±

1.
7

20
.0
±

0.
9

18
.8
±

0.
3

21
.6
±

0.
5

17
.8
±

0.
6

19
.6
±

1.
2

6
43

.7
±

2.
4

41
.8
±

0.
7

43
.0
±

0.
0

44
.0
±

0.
0

45
.0
±

1.
3

45
.2
±

2.
2

50
.2
±

2.
5

46
.2
±

1.
4

45
.0
±

0.
9

Terrains

7
39

.0
±

0.
0

36
.8
±

0.
2

41
.2
±

0.
8

36
.2
±

1.
4

37
.4
±

0.
8

35
.6
±

0.
6

36
.0
±

0.
0

37
.6
±

0.
6

37
.8
±

1.
0

8
44

.2
±

0.
8

39
.0
±

3.
8

39
.8
±

0.
9

41
.6
±

0.
8

41
.6
±

0.
7

42
.0
±

0.
0

40
.0
±

1.
0

43
.2
±

0.
9

40
.2
±

1.
3

9
26

.2
±

0.
8

31
.8
±

0.
4

25
.4
±

0.
7

28
.4
±

0.
6

27
.8
±

2.
4

26
.6
±

1.
6

31
.7
±

0.
5

32
.0
±

0.
8

26
.4
±

1.
7

10
34

.0
±

1.
1

35
.6
±

0.
3

36
.2
±

0.
1

36
.6
±

1.
0

35
.4
±

0.
0

36
.6
±

0.
7

34
.6
±

1.
2

36
.4
±

0.
6

35
.0
±

1.
8

Su
m

37
2.

9±
15

.7
36

1.
9±

11
.1

36
8.

0±
7.

1
37

2.
4±

10
.1

36
6.

3±
9.

2
35

7.
2±

8.
2

37
3.

7±
11

.3
36

8.
3±

7.
7

35
4.

6±
11

.3

	Introduction
	Overview
	Scope of the Dissertation
	Aim of the Dissertation
	Overview of the Chapters

	Background on Machine Learning
	Overview
	Unsupervised Learning
	Overview – The clustering problem
	k-means Clustering

	Supervised Learning
	Overview – The classification problem
	Decision Tree Learning Techniques
	Neural Network Techniques
	Statistical Learning Techniques
	Support Vector Machine Techniques
	Choosing the Appropriate Technique

	Reinforcement Learning
	Overview – Markov Decision Process
	The Problem
	The Solution – Techniques
	Known-model Techniques
	Unknown-model Techniques

	Choosing the Appropriate Method

	Existing Work on Ad hoc Team Formation
	Defining the problem
	Lines of Research
	Policy Selection
	Unknown Teammate Model
	Adaptive Teammates – The Multi-Agent Learning Aspect of the Problem
	Teacher – Learner
	Relation of this Work to Existing Work

	A Novel Approach to the Ad hoc Problem
	Analyzing the problem
	Policy Selection
	Teammate Modeling
	Strategy Construction
	Agent Design

	The Search-And-Rescue Domain
	Overview
	The Game
	Agent Strategies
	The Ad hoc Agent Strategy
	Policy Selection
	Strategy Construction
	Teammate Modeling

	Experiments
	Overview
	Known Teammate Models
	Using Modeled Policy
	Constructing Strategy
	Efficiency Tests
	Effectiveness Tests

	Unknown Teammate Models
	Learning Sensitivity Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Simulator Specifics
	Agent Strategy API
	Agent Policy API
	Simulator Configuration
	Class Diagrams

	A* Agent Specifics
	Experiment Results
	Known Teammate Models
	Using Modeled Policy
	Constructing Strategy
	Efficiency Tests
	Effectiveness Tests

	Unknown Teammate Models
	Learning Sensitivity Analysis

