
DEEP LEARNING WITH KERAS

GAME PLAYING

Themistoklis Diamantopoulos

Reinforcement Learning
• Game

• agent situated in an environment with a certain state
• agent performs actions and receives rewards

• Markov Decision Process
• Episode comprising states, actions, rewards

Source: https://ai.intel.com/demystifying-deep-reinforcement-learning/

Q-learning
• Update algorithm

where:
s: current state s΄: next state r: reward
a: current action a΄: next possible actions
γ: discount factor α: learning rate

Source: https://www.slideshare.net/cprakash2011/reinforcement-learning-40052403

Exploitation vs
Exploration

Example 1: Catch
• Environment: grid
• State: position of the ball
• Actions: [left, stay, right]
• Reward: catch the ball

• 1 if caught or -1 if not caught

Source: https://medium.freecodecamp.org/deep-reinforcement-learning-where-to-start-291fb0058c01

NEURAL NETWORKS ALGORITHM (s, a, r, s΄)
1. For each a΄ (left, stay, right) predict Q(s΄, a΄) (using the neural network)
2. Choose highest max{Q(s΄, a΄)}
3. Calculate r + γ * max{Q(s’, a’)} (this is the target value)
4. Train the network using the target value (minimize distance between

predicted Q(s, a)  and  target)

Solution using MLP
• 3-layer fully connected network
• Input vector equal to state (full grid)
• Output layer: 3 nodes (actions)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0

Source: https://medium.freecodecamp.org/deep-reinforcement-learning-where-to-start-291fb0058c01

Example 2: Maze
• Environment: grid, walls ()
• State: position of player ()
• Actions:

• [left–0, up–1, right–2, down–3]

• Rewards:
• 1 for catching the cheese ()
• -0.04 for each move to an open cell
• -0.75 for trying to move into a wall ()
• -0.8 for trying to move outside the maze
• -0.25 for moving to already visited cell ()

• Game ends if cheese is caught or if reward < –mazesize/2

Source: http://www.samyzaf.com/ML/rl/qmaze.html

Problem Modeling
• States, actions, and rewards
• Try to find a policy

Source: http://www.samyzaf.com/ML/rl/qmaze.html

Policy

Solution using MLP
• 3-layer fully connected network
• Input vector equal to state (full grid)
• Output layer: 4 nodes (actions)

Source: http://www.samyzaf.com/ML/rl/qmaze.html

1 0 1 1 1 1 1

1 1 1 0 0 1 0

0 0 0 1 1 1 0

1 1 1 1 0 0 1

1 0 0 0 1 1 1

1 0 1 1 1 1 1

1 1 1 0 1 1 1

	Deep Learning with Keras����Game Playing
	Reinforcement Learning
	Q-learning
	Example 1: Catch
	Solution using MLP
	Example 2: Maze
	Problem Modeling
	Solution using MLP

